2020
Signalling through cerebral cavernous malformation protein networks
Su VL, Calderwood DA. Signalling through cerebral cavernous malformation protein networks. Open Biology 2020, 10: 200263. PMID: 33234067, PMCID: PMC7729028, DOI: 10.1098/rsob.200263.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersCarrier ProteinsDisease ManagementDisease SusceptibilityGenetic Predisposition to DiseaseHemangioma, Cavernous, Central Nervous SystemHumansIntracellular SpaceMutationProtein BindingProtein Interaction Domains and MotifsProtein Interaction MappingProtein Interaction MapsProtein TransportSignal TransductionConceptsCCM proteinsCerebral cavernous malformationsCell junctionalMEKK3-MEK5Protein complexesAdaptor proteinProtein functionSubcellular localizationCytoskeletal reorganizationComplex proteinsProtein networkRhoA-ROCKMolecular basisProtein activityGene expressionFunction mutationsCell adhesionCell contractilityProteinPathwayLeaky blood vesselsCurrent knowledgeDisease pathologyCdc42Recent advancesDifferences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding
Kadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA. Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. Journal Of Biological Chemistry 2020, 295: 11161-11173. PMID: 32546480, PMCID: PMC7415974, DOI: 10.1074/jbc.ra120.013618.Peer-Reviewed Original ResearchConceptsKindlin-3Kindlin-2Focal adhesionsIntegrin cytoplasmic domainTransmembrane adhesion receptorsComparative sequence analysisLive-cell imagingAbility of cellsCytoplasmic domainF3 subdomainsMammalian cellsCytoplasmic componentsExtracellular environmentAdhesion receptorsKindlinSequence analysisIntegrin familySelf-associationIntegrin bindingPhysiological importanceMolecular levelPoint mutationsProteinCellsAdhesionChapter 22: Structural and signaling functions of integrins
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. Biochimica Et Biophysica Acta (BBA) - Biomembranes 2020, 1862: 183206. PMID: 31991120, PMCID: PMC7063833, DOI: 10.1016/j.bbamem.2020.183206.Peer-Reviewed Original ResearchConceptsFunction of integrinsAbility of integrinsTransmembrane adhesion receptorsNon-redundant functionsDifferent integrin heterodimersExtracellular matrix proteinsComplex structural rearrangementsDiverse downstreamCytoskeletal complexMetazoan lifeExtracellular environmentΒ-subunitAdhesion receptorsIntegrin heterodimersIntegrin familyMatrix proteinsCell adhesionIntegrinsStructural rearrangementsHeterodimersRecent advancesSubunitsSignalingProteinFunction
2014
Integrin Cytoplasmic Tail Interactions
Morse EM, Brahme NN, Calderwood DA. Integrin Cytoplasmic Tail Interactions. Biochemistry 2014, 53: 810-820. PMID: 24467163, PMCID: PMC3985435, DOI: 10.1021/bi401596q.Peer-Reviewed Original ResearchConceptsIntegrin-interacting proteinsIntegrin cytoplasmic tailsCell surface adhesion receptorsIntegrin-binding proteinsHeterodimeric cell-surface adhesion receptorsSurface adhesion receptorsExtracellular ligandsMulticellular lifeCytoplasmic tailIntegrin engagementCell motilityExtracellular environmentTransduce chemicalIntegrin activityIntegrin localizationIntracellular proteinsAdhesion receptorsTail interactionsMechanical signalsProteinIntegrinsCellsCytoskeletonLocalizationTraffickingCerebral cavernous malformation proteins at a glance
Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. Journal Of Cell Science 2014, 127: 701-707. PMID: 24481819, PMCID: PMC3924200, DOI: 10.1242/jcs.138388.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsCapillary PermeabilityCarrier ProteinsCentral Nervous System NeoplasmsHemangioma, Cavernous, Central Nervous SystemHumansKRIT1 ProteinMembrane ProteinsMicrotubule-Associated ProteinsNeoplasm ProteinsProto-Oncogene ProteinsRho GTP-Binding ProteinsSignal TransductionConceptsAdaptor proteinCerebral Cavernous Malformation ProteinsMulti-domain adaptor proteinBasic cellular processesProtein-protein interactionsCerebral cavernous malformationsAccompanying posterGlance articleCCM proteinsCellular processesProtein functionCellular phenotypesTrimeric complexFunction mutationsCell adhesionCell scienceProteinLeaky blood vesselsFocal neurological defectsCurrent understandingNeurological defectsCytoskeletalGenesPDCD10KRIT1Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation
Huet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, Calderwood DA. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. Journal Of Cell Science 2014, 127: 4308-4321. PMID: 25086068, PMCID: PMC4179494, DOI: 10.1242/jcs.155879.Peer-Reviewed Original ResearchConceptsIntegrin activationKindlin-2Kindlin-3Focal adhesion proteinsFunctional differencesIntegrin-linked kinaseILK complexAdhesion proteinsF2 subdomainMolecular basisIsoform specificityComplex bindsKindlinFA targetingActivation defectsCell adhesionActivationFALocalizesKinaseGFPSignalingILKIsoformsProtein
2012
Zasp regulates integrin activation
Bouaouina M, Jani K, Long JY, Czerniecki S, Morse EM, Ellis SJ, Tanentzapf G, Schöck F, Calderwood DA. Zasp regulates integrin activation. Journal Of Cell Science 2012, 125: 5647-5657. PMID: 22992465, PMCID: PMC3575701, DOI: 10.1242/jcs.103291.Peer-Reviewed Original ResearchConceptsIntegrin activationDomain-containing proteinsExtracellular matrixHeterodimeric adhesion receptorsPDZ motif-containing proteinΑ5β1 integrinMammalian tissue cultureScaffold proteinCytoplasmic tailFirst proteinECM ligandsMuscle contractile machineryΒ-integrinExtracellular domainAdhesion receptorsIntegrin heterodimersTalinConformational changesHigh-affinity bindingEssential processProteinIntegrinsHuman cardiomyopathyZASPTissue cultureFilamins in Mechanosensing and Signaling
Razinia Z, Mäkelä T, Ylänne J, Calderwood DA. Filamins in Mechanosensing and Signaling. Annual Review Of Biophysics 2012, 41: 227-246. PMID: 22404683, PMCID: PMC5508560, DOI: 10.1146/annurev-biophys-050511-102252.Peer-Reviewed Original ResearchConceptsPlasma membraneActin filamentsActin-binding proteinsExtracellular matrix connectionsCortical rigidityActin cytoskeletonCellular functionsCell cortexTranscription factorsTransmembrane receptorsAdhesion proteinsCell shapeFilaminIon channelsDiverse arrayFunctional evidenceEssential roleProteinMatrix connectionsPhysical forcesMembraneFilamentsCytoskeletalMechanosensingCytoskeleton
2011
The E3 ubiquitin ligase specificity subunit ASB2α targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain
Razinia Z, Baldassarre M, Bouaouina M, Lamsoul I, Lutz PG, Calderwood DA. The E3 ubiquitin ligase specificity subunit ASB2α targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain. Journal Of Cell Science 2011, 124: 2631-2641. PMID: 21750192, PMCID: PMC3138704, DOI: 10.1242/jcs.084343.Peer-Reviewed Original ResearchConceptsFilamin degradationProteasomal degradationCell differentiationDomain of filaminActin-rich structuresUbiquitin-proteasome pathwayExtracellular matrix connectionsActin cytoskeletonTransmembrane proteinSubcellular localizationMolecular basisSignaling cascadesASB2αActin filamentsFilaminAcute degradationBiochemical assaysMyeloid leukemia cellsImportant familyActinEarly eventsProteinLeukemia cellsImportant mechanismDifferentiation
2009
Filamins Regulate Cell Spreading and Initiation of Cell Migration
Baldassarre M, Razinia Z, Burande CF, Lamsoul I, Lutz PG, Calderwood DA. Filamins Regulate Cell Spreading and Initiation of Cell Migration. PLOS ONE 2009, 4: e7830. PMID: 19915675, PMCID: PMC2773003, DOI: 10.1371/journal.pone.0007830.Peer-Reviewed Original ResearchConceptsCell spreadingLarge actin-binding proteinCell biological analysesCell migrationActin-binding proteinsLoss of FlnAShRNA-mediated knockdownInitiation of migrationInhibition of initiationRecent knockout studiesProteasomal degradationKnockdown cellsInitiation of motilityKnockout studiesFilaminSingle knockoutImpairs migrationFLNAFLNBBiological analysisKnockdownProteinObserved defectsCellsPeriventricular heterotopia
2008
JAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activation
Luissint AC, Lutz PG, Calderwood DA, Couraud PO, Bourdoulous S. JAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activation. Journal Of Cell Biology 2008, 183: 1159-1173. PMID: 19064666, PMCID: PMC2600739, DOI: 10.1083/jcb.200805061.Peer-Reviewed Original ResearchConceptsJunctional adhesion moleculeIntegrin activationIntegrin-dependent adhesionIntegrin VLA-4Endothelial cellsAdhesion moleculesEpithelial adhesion moleculesJAM familyHeterophilic interactionsCis dimerizationDimerization stateVLA-4Monomeric formLeukocyte integrin VLA-4CellsActivationAdhesionComplexesProteinMoleculesDimerizationLeukocyte adhesionRecruitmentAccumulationFamily
2007
Integrin Cytoskeletal Interactions
Lad Y, Harburger DS, Calderwood DA. Integrin Cytoskeletal Interactions. Methods In Enzymology 2007, 426: 69-84. PMID: 17697880, DOI: 10.1016/s0076-6879(07)26004-5.Peer-Reviewed Original ResearchConceptsIntegrin cytoplasmic tailsCytoplasmic tailProtein-protein interaction studiesIntegrin-binding proteinsIntegrin adhesion receptorsCell-substratum adhesionCytoskeletal interactionsPlasma membraneCytoskeletal proteinsBiochemical signalsAdhesion receptorsIntracellular ligandsTail interactionsCellular activitiesIntegrin-cytoskeletal interactionsMechanical forcesRecombinant modelProteinInteraction studiesTailAdhesionInteractionRegulationDynamic interactionMembrane
2006
The Molecular Basis of Filamin Binding to Integrins and Competition with Talin
Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, Campbell ID, Ylänne J, Calderwood DA. The Molecular Basis of Filamin Binding to Integrins and Competition with Talin. Molecular Cell 2006, 21: 337-347. PMID: 16455489, DOI: 10.1016/j.molcel.2006.01.011.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBinding SitesCalpainContractile ProteinsCrystallography, X-RayFilaminsIntegrin beta ChainsMiceMicrofilament ProteinsModels, MolecularMolecular Sequence DataNIH 3T3 CellsNuclear Magnetic Resonance, BiomolecularProtein BindingProtein ConformationProtein Structure, TertiaryRecombinant Fusion ProteinsReproducibility of ResultsSequence Homology, Amino AcidTalinConceptsAdhesion receptorsTalin-dependent integrin activationActin-crosslinking proteinsIntegrin adhesion receptorsHigh-resolution structuresFilamin bindingExtended beta strandActin cytoskeletonIntegrin tailsMultiple transmembraneMolecular basisStrands CBeta strandsDomain interactionsBiochemical signalsIntegrin functionIntegrin activationFilamin ATalinCell membraneTail formsCytoskeletonProteinBinding sitesFilamin
2004
Competition for Talin Results in Trans-dominant Inhibition of Integrin Activation*
Calderwood DA, Tai V, Di Paolo G, De Camilli P, Ginsberg MH. Competition for Talin Results in Trans-dominant Inhibition of Integrin Activation*. Journal Of Biological Chemistry 2004, 279: 28889-28895. PMID: 15143061, DOI: 10.1074/jbc.m402161200.Peer-Reviewed Original ResearchConceptsTrans-dominant inhibitionIntegrin activationFragment of talinCytoskeletal protein talinIntegrin adhesion receptorsMulticellular animalsProtein talinExtracellular ligandsCellular processesBeta tailsTalinTransdominant inhibitionAdhesion receptorsDifferent integrinsOverexpression of integrinsIntegrinsActivationClot retractionInhibitionReceptorsTailAdhesionSpeciesProteinOverexpression
2000
Distinct Domains of CD98hc Regulate Integrins and Amino Acid Transport*
Fenczik C, Zent R, Dellos M, Calderwood D, Satriano J, Kelly C, Ginsberg M. Distinct Domains of CD98hc Regulate Integrins and Amino Acid Transport*. Journal Of Biological Chemistry 2000, 276: 8746-8752. PMID: 11121428, DOI: 10.1074/jbc.m011239200.Peer-Reviewed Original ResearchConceptsAmino acid transportIntegrin functionAcid transportDistinct domainsType II transmembrane proteinIsoleucine transportAmino acid transportersCD98 heavy chainCell surface heterodimersTransmembrane domainCytoplasmic domainTransmembrane proteinSurface heterodimersExtracellular domainAcid transportersCD98hcHeavy chainProteinIntegrinsCovalent linkageDifferent light chainsLight chainDomainMutantsHeterodimersIntegrin cytoplasmic domain-binding proteins
Liu S, Calderwood D, Ginsberg M. Integrin cytoplasmic domain-binding proteins. Journal Of Cell Science 2000, 113: 3563-3571. PMID: 11017872, DOI: 10.1242/jcs.113.20.3563.Peer-Reviewed Original ResearchConceptsDomain-binding proteinCytoplasmic domainCellular proteinsIntegrin cytoplasmic domainActin-binding proteinsMore cellular proteinsCell surface receptorsGene regulationCellular functionsTransduce signalsSignal transductionBiological functionsGene expressionFunctional analysisCell adhesionLarge familySurface receptorsProteinCytoskeletonIntegrin chainsIntegrinsBiological responsesPivotal roleMechanical linkImportant roleClass- and Splice Variant-specific Association of CD98 with Integrin β Cytoplasmic Domains*
Zent R, Fenczik C, Calderwood D, Liu S, Dellos M, Ginsberg M. Class- and Splice Variant-specific Association of CD98 with Integrin β Cytoplasmic Domains*. Journal Of Biological Chemistry 2000, 275: 5059-5064. PMID: 10671548, DOI: 10.1074/jbc.275.7.5059.Peer-Reviewed Original ResearchConceptsCytoplasmic domainIntegrin activationMuscle-specific splice variantIntegrin beta cytoplasmic domainsBasic amino acid transportType II transmembrane proteinIntegrin β cytoplasmic domainBeta cytoplasmic domainsIntegrin cytoplasmic domainCell fusion eventsIntegrin adhesion receptorsAmino acid transportTransmembrane proteinMembrane proteinsFusion eventsIntegrin classAdhesion receptorsSplice variantsAcid transportCD98Variant specificityProteinIntegrinsDomainActivation