2022
An Alternative Culture Medium for Continuous In Vitro Propagation of the Human Pathogen Babesia duncani in Human Erythrocytes
Singh P, Pal AC, Mamoun CB. An Alternative Culture Medium for Continuous In Vitro Propagation of the Human Pathogen Babesia duncani in Human Erythrocytes. Pathogens 2022, 11: 599. PMID: 35631120, PMCID: PMC9146245, DOI: 10.3390/pathogens11050599.Peer-Reviewed Original Research
2008
Disruption of the Plasmodium falciparum PfPMT Gene Results in a Complete Loss of Phosphatidylcholine Biosynthesis via the Serine-Decarboxylase-Phosphoethanolamine-Methyltransferase Pathway and Severe Growth and Survival Defects*
Witola WH, El Bissati K, Pessi G, Xie C, Roepe PD, Mamoun CB. Disruption of the Plasmodium falciparum PfPMT Gene Results in a Complete Loss of Phosphatidylcholine Biosynthesis via the Serine-Decarboxylase-Phosphoethanolamine-Methyltransferase Pathway and Severe Growth and Survival Defects*. Journal Of Biological Chemistry 2008, 283: 27636-27643. PMID: 18694927, PMCID: PMC2562060, DOI: 10.1074/jbc.m804360200.Peer-Reviewed Original ResearchConceptsSDPM pathwayBiosynthesis of phosphatidylcholinePhosphatidylcholine biosynthesisParasite growthMajor membrane phospholipidsHuman malaria parasiteHost serineSerine decarboxylaseGenetic evidenceMethyltransferase enzymeSurvival defectGene resultsYeast cellsMethylation of phosphatidylethanolamineBiosynthesisSynthesis of phosphatidylcholineBiochemical studiesMembrane phospholipidsMalaria parasitesPlasmodium parasitesSevere growthPathwaySignificant defectsParasitesComplete loss