2024
Activated sputum eosinophils associated with exacerbations in children on mepolizumab
Wilson G, Knight J, Liu Q, Shelar A, Stewart E, Wang X, Yan X, Sanders J, Visness C, Gill M, Gruchalla R, Liu A, Kattan M, Khurana Hershey G, Togias A, Becker P, Altman M, Busse W, Jackson D, Montgomery R, Chupp G. Activated sputum eosinophils associated with exacerbations in children on mepolizumab. Journal Of Allergy And Clinical Immunology 2024, 154: 297-307.e13. PMID: 38485057, PMCID: PMC11305967, DOI: 10.1016/j.jaci.2024.01.031.Peer-Reviewed Original ResearchAirway eosinophilsSputum eosinophilsPatients treated with mepolizumabPlacebo-controlled clinical trialAnti-IL-5 treatmentEffect of mepolizumabEosinophil subpopulationsSevere eosinophilic asthmaAnti-interleukin-5Expression of CD62LFrequency of exacerbationsEosinophilic asthmaActivation markersSputum samplesUnsupervised cluster analysisMepolizumabTreatment armsReduce exacerbationsCD62LClinical trialsExacerbationMass cytometryEosinophilsExacerbation riskIntracellular markersActivated sputum eosinophils associated with exacerbations in children on mepolizumab
Wilson GE, Knight J, Liu Q, Shelar A, Stewart E, Wang X, Yan X, Sanders J, Visness C, Gill M, Gruchalla R, Liu AH, Kattan M, Khurana Hershey GK, Togias A, Becker PM, Altman MC, Busse WW, Jackson DJ, Montgomery RR, Chupp GL. Activated sputum eosinophils associated with exacerbations in children on mepolizumab. J Allergy Clin Immunol 2024 PMID: 38485057, DOI: 10.1016/j.jaci.2024.01.031.Peer-Reviewed Original Research
2023
Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gαq and Gαs Activate the Caenorhabditis elegans Egg-Laying Muscles
Olson A, Butt A, Christie N, Shelar A, Koelle M. Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gαq and Gαs Activate the Caenorhabditis elegans Egg-Laying Muscles. Journal Of Neuroscience 2023, 43: 3789-3806. PMID: 37055179, PMCID: PMC10219013, DOI: 10.1523/jneurosci.2301-22.2023.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsMultiple G protein-coupled receptorsMuscle cellsMuscle activitySerotonin G protein-coupled receptorsDesigner G protein-coupled receptorsIntact animalsG proteinsEndogenous G protein-coupled receptorsIndividual G protein-coupled receptorsGPCR signalsCalcium activityEgg-laying musclesSerotoninIndividual neuronsDouble knockoutNeuronsBehavioral outcomesMuscleMost cellsG protein GαqCellsSubthreshold signalEgg-laying systemSER-1
2022
Using NeuroPAL Multicolor Fluorescence Labeling to Identify Neurons in C. elegans
Santiago E, Shelar A, Christie N, Lewis‐Hayre M, Koelle M. Using NeuroPAL Multicolor Fluorescence Labeling to Identify Neurons in C. elegans. Current Protocols 2022, 2: e610. PMID: 36521003, PMCID: PMC10257892, DOI: 10.1002/cpz1.610.Peer-Reviewed Original Research
2018
Regulation of C-C chemokine receptor 5 (CCR5) stability by Lys197 and by transmembrane protein aptamers that target it for lysosomal degradation
Petti LM, Marlatt SA, Luo Y, Scheideman EH, Shelar A, DiMaio D. Regulation of C-C chemokine receptor 5 (CCR5) stability by Lys197 and by transmembrane protein aptamers that target it for lysosomal degradation. Journal Of Biological Chemistry 2018, 293: 8787-8801. PMID: 29678881, PMCID: PMC5995508, DOI: 10.1074/jbc.ra117.001067.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsC motif chemokine receptor 5Transmembrane helicesAmino acidsProtein aptamerFifth transmembrane helixUncharged amino acidsSpecific amino acidsProtein-coupled receptorsSubstitution of LysTraptamersReceptor stabilityLysosomal degradationHomologous positionsDiverse mechanismsChemokine receptor 5Initial characterizationNew therapeutic approachesHuman T cellsStable complexesCCR5 expressionCentral roleNew insightsChemokine receptorsHelix
2017
Single methyl groups can act as toggle switches to specify transmembrane Protein-protein interactions
He L, Steinocher H, Shelar A, Cohen EB, Heim EN, Kragelund BB, Grigoryan G, DiMaio D. Single methyl groups can act as toggle switches to specify transmembrane Protein-protein interactions. ELife 2017, 6: e27701. PMID: 28869036, PMCID: PMC5597333, DOI: 10.7554/elife.27701.Peer-Reviewed Original ResearchConceptsProtein-protein interactionsErythropoietin receptorTransmembrane proteinTransmembrane protein-protein interactionsTMD interactionsModel transmembrane proteinMouse erythropoietin receptorHuman erythropoietin receptorSingle methyl groupGrowth factor independenceSide chain methyl groupsCellular processesMouse cellsFactor independenceChain methyl groupsIntrinsic specificityToggle switchTraptamersMethyl groupProteinReceptor activitySpecific positionsReceptorsSpecificityOligomerization
2016
Data on diverse roles of helix perturbations in membrane proteins
Shelar A, Bansal M. Data on diverse roles of helix perturbations in membrane proteins. Data In Brief 2016, 9: 781-802. PMID: 27844046, PMCID: PMC5099277, DOI: 10.1016/j.dib.2016.10.023.Peer-Reviewed Original ResearchInter-helical interactionsMembrane proteinsHelix perturbationTM helicesMembrane protein familyProtein familyHydrophobic residuesDiverse rolesKinked geometryΠ-helixOligomer formationBackbone torsion anglesProteinHelixStructural variationsHelical conformationDistinct typesBilayersResiduesStrong evidenceLinear αRoleHelix perturbations in membrane proteins assist in inter-helical interactions and optimal helix positioning in the bilayer
Shelar A, Bansal M. Helix perturbations in membrane proteins assist in inter-helical interactions and optimal helix positioning in the bilayer. Biochimica Et Biophysica Acta 2016, 1858: 2804-2817. PMID: 27521749, DOI: 10.1016/j.bbamem.2016.08.003.Peer-Reviewed Original ResearchConceptsInter-helical interactionsMembrane proteinsTM regionHelix perturbationTM helicesΠ-helixDistinct sequence signaturesIntegral membrane proteinsLow sequence identityHeme-copper oxidasesTransmembrane helicesProtein functionSequence signaturesSequence identityHydrophobic mismatchΑ-helixProtein chainsAmino acidsHelical fragmentsCopper oxidasesProteinHelix terminiHelixTerminusBilayers
2014
Sequence and conformational preferences at termini of α‐helices in membrane proteins: Role of the helix environment
Shelar A, Bansal M. Sequence and conformational preferences at termini of α‐helices in membrane proteins: Role of the helix environment. Proteins Structure Function And Bioinformatics 2014, 82: 3420-3436. PMID: 25257385, DOI: 10.1002/prot.24696.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsComputational BiologyConserved SequenceDatabases, ProteinHumansHydrogen BondingHydrophobic and Hydrophilic InteractionsLipid BilayersMembrane ProteinsModels, BiologicalProtein ConformationProtein FoldingProtein StabilityProtein Structure, SecondarySoftware ValidationTerminology as TopicConceptsMembrane proteinsSequence preferenceΑ-helixC-terminusHelical membrane proteinsCommon secondary structural elementsHelix terminiStructural motifsSecondary structural elementsSecondary structure predictionRat neurotensin receptorTransmembrane helicesMembrane environmentHelix bundleSequencing studiesHelical positionsAmino acidsProteinStructure predictionTerminusMembrane coreGlobular proteinsMotifHelixConformational preferences