2023
Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination
Suberi A, Grun M, Mao T, Israelow B, Reschke M, Grundler J, Akhtar L, Lee T, Shin K, Piotrowski-Daspit A, Homer R, Iwasaki A, Suh H, Saltzman W. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Science Translational Medicine 2023, 15: eabq0603. PMID: 37585505, PMCID: PMC11137749, DOI: 10.1126/scitranslmed.abq0603.Peer-Reviewed Original ResearchConceptsSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Lethal viral challengeAntigen-presenting cellsSyndrome coronavirus 2Humoral adaptive immunityLung-targeting deliveryIntranasal vaccinationMucosal vaccinationPulmonary diseaseMucosal vaccinesSusceptible miceCoronavirus 2Viral challengeAdaptive immunityLungTranslational potentialMessenger RNA (mRNA) therapeuticsVaccinationMRNADeliveryTherapeuticsRNA therapeuticsTherapeutic deliverySARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity
Jaycox J, Lucas C, Yildirim I, Dai Y, Wang E, Monteiro V, Lord S, Carlin J, Kita M, Buckner J, Ma S, Campbell M, Ko A, Omer S, Lucas C, Speake C, Iwasaki A, Ring A. SARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity. Nature Communications 2023, 14: 1299. PMID: 36894554, PMCID: PMC9996559, DOI: 10.1038/s41467-023-36686-8.Peer-Reviewed Original ResearchConceptsVaccine-associated myocarditisAutoimmune patientsAutoantibody reactivitySARS-CoV-2 mRNA vaccinationVaccine-related adverse effectsSARS-CoV-2 immunitySARS-CoV-2 infectionAcute COVID-19Development of autoantibodiesCOVID-19 patientsAnti-viral immunityVirus-specific antibodiesCOVID-19 vaccineCOVID-19Humoral autoimmunityMRNA vaccinationAutoantibody responsePost vaccinationAutoantibody developmentAutoimmune diseasesHumoral responseHealthy individualsPatientsAntigen profilingAdverse effects
2022
No evidence of fetal defects or anti-syncytin-1 antibody induction following COVID-19 mRNA vaccination
Lu-Culligan A, Tabachnikova A, Pérez-Then E, Tokuyama M, Lee HJ, Lucas C, Monteiro V, Miric M, Brache V, Cochon L, Muenker MC, Mohanty S, Huang J, Kang I, Dela Cruz C, Farhadian S, Campbell M, Yildirim I, Shaw AC, Ma S, Vermund SH, Ko AI, Omer SB, Iwasaki A. No evidence of fetal defects or anti-syncytin-1 antibody induction following COVID-19 mRNA vaccination. PLOS Biology 2022, 20: e3001506. PMID: 35609110, PMCID: PMC9129011, DOI: 10.1371/journal.pbio.3001506.Peer-Reviewed Original ResearchConceptsCOVID-19 mRNA vaccinationMRNA vaccinationEarly pregnancyFetal sizeCoronavirus disease 2019 (COVID-19) mRNA vaccinationSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Maternal antibody statusAdverse neonatal outcomesSyndrome coronavirus 2Birth defectsPolyinosinic-polycytidylic acidCrown-rump lengthGross birth defectsUnvaccinated adultsMaternal illnessNeonatal outcomesVaccinated adultsAntibody statusTLR3 agonistEarly immunizationMurine pregnancyAntibody inductionCoronavirus 2
2019
YTHDF1 Control of Dendritic Cell Cross-Priming as a Possible Target of Cancer Immunotherapy
Kim DJ, Iwasaki A. YTHDF1 Control of Dendritic Cell Cross-Priming as a Possible Target of Cancer Immunotherapy. Biochemistry 2019, 58: 1945-1946. PMID: 30943019, DOI: 10.1021/acs.biochem.9b00200.Peer-Reviewed Original Research
2017
Sensing Self and Foreign Circular RNAs by Intron Identity
Chen YG, Kim MV, Chen X, Batista PJ, Aoyama S, Wilusz JE, Iwasaki A, Chang HY. Sensing Self and Foreign Circular RNAs by Intron Identity. Molecular Cell 2017, 67: 228-238.e5. PMID: 28625551, PMCID: PMC5610545, DOI: 10.1016/j.molcel.2017.05.022.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceDEAD Box Protein 58Encephalitis Virus, Venezuelan EquineEncephalomyelitis, Venezuelan EquineHEK293 CellsHeLa CellsHost-Pathogen InteractionsHumansImmune ToleranceImmunity, InnateIntronsMiceNucleic Acid ConformationProtein BindingRAW 264.7 CellsReceptors, ImmunologicRNARNA Processing, Post-TranscriptionalRNA-Binding ProteinsRNA, CircularRNA, MessengerSpliceosomesTransfectionConceptsCircular RNAsInnate immunity genesMammalian transcriptionDiverse RNACytoplasmic fociHuman circRNAsMammalian cellsImmunity genesEndogenous splicingHuman intronsInnate immune sensingPrimary sequenceCircRNA sequenceRNA structureCircRNAsUnknown functionIntronsRNASensor RIGImmune sensingInnate immunitySelf-nonself discriminationPotent inductionSequenceBiogenesis
2003
CCL9 Is Secreted by the Follicle-Associated Epithelium and Recruits Dome Region Peyer’s Patch CD11b+ Dendritic Cells
Zhao X, Sato A, Dela Cruz CS, Linehan M, Luegering A, Kucharzik T, Shirakawa AK, Marquez G, Farber JM, Williams I, Iwasaki A. CCL9 Is Secreted by the Follicle-Associated Epithelium and Recruits Dome Region Peyer’s Patch CD11b+ Dendritic Cells. The Journal Of Immunology 2003, 171: 2797-2803. PMID: 12960300, DOI: 10.4049/jimmunol.171.6.2797.Peer-Reviewed Original ResearchConceptsFollicle-associated epitheliumCCR6-deficient miceSubepithelial dome regionDendritic cellsPeyer's patchesMouse Peyer's patchesCCR6-/- miceDC recruitmentChemokine CCL20DC numbersAb neutralizationCCL9Villus epitheliumCCL20RT-PCRChemotaxis assaysProtein levelsMiceEpitheliumCCR6Vivo distributionImmunofluorescence analysisChemokinesSignificant reductionPutative receptor
2002
The CXC Chemokine Murine Monokine Induced by IFN-γ (CXC Chemokine Ligand 9) Is Made by APCs, Targets Lymphocytes Including Activated B Cells, and Supports Antibody Responses to a Bacterial Pathogen In Vivo
Park MK, Amichay D, Love P, Wick E, Liao F, Grinberg A, Rabin RL, Zhang HH, Gebeyehu S, Wright TM, Iwasaki A, Weng Y, DeMartino JA, Elkins KL, Farber JM. The CXC Chemokine Murine Monokine Induced by IFN-γ (CXC Chemokine Ligand 9) Is Made by APCs, Targets Lymphocytes Including Activated B Cells, and Supports Antibody Responses to a Bacterial Pathogen In Vivo. The Journal Of Immunology 2002, 169: 1433-1443. PMID: 12133969, DOI: 10.4049/jimmunol.169.3.1433.Peer-Reviewed Original ResearchConceptsT cellsActivated B cellsB cellsDendritic cellsIFN-gammaIntracellular bacterium Francisella tularensis live vaccine strainChemotactic factorsCell activationFrancisella tularensis live vaccine strainRole of MIGT cell infiltrationTularensis live vaccine strainOptimal humoral responsesLive vaccine strainT cell activationB cell activationHuman T cellsReceptor CXCR3Humoral responseCell infiltrationLymphoid organsTarget lymphocytesCXC chemokinesInflammatory reactionPeripheral tissues
2000
Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine
Iwasaki A, Kelsall B. Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine. Journal Of Experimental Medicine 2000, 191: 1381-1394. PMID: 10770804, PMCID: PMC2193144, DOI: 10.1084/jem.191.8.1381.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceChemokine CCL19Chemokine CCL20Chemokines, CCChemotaxisDendritic CellsDNA PrimersFemaleGene ExpressionIn Situ HybridizationMacrophage Inflammatory ProteinsMiceMice, Inbred BALB CMicroscopy, ConfocalModels, BiologicalPeyer's PatchesReceptors, CCR6Receptors, CCR7Receptors, ChemokineRNA, MessengerSpleenConceptsDendritic cell subsetsInterfollicular regionsDC subsetsCell subsetsInflammatory proteinPeyer's patchesSecondary lymphoid organ chemokineChemokine macrophage inflammatory proteinSplenic DC subsetsSubepithelial dome regionDistinct dendritic cell subsetsRole of chemokinesT cell responsesMacrophage inflammatory proteinT-cell regionsFollicle-associated epitheliumMurine Peyer's patchesTranscriptase-polymerase chain reaction analysisFunctional CCR7Lymphoid DCsMIP-3βPP DCsMyeloid DCsCCR7 expressionPolymerase chain reaction analysis