2025
Feedback between F-actin organization and active stress governs criticality and energy localization in the cell cytoskeleton
Sun Z, Zimmerberg N, Kelly P, Floyd C, Papoian G, Murrell M. Feedback between F-actin organization and active stress governs criticality and energy localization in the cell cytoskeleton. Nature Physics 2025, 1-13. DOI: 10.1038/s41567-025-02919-4.Peer-Reviewed Original ResearchF-actin organizationF-actinNucleation-promoting factorsMyosin II motorsF-actin filamentsDynamic structural reorganizationActin cytoskeletonCytoskeletal dynamicsCellular self-organizationCell cytoskeletonBiological processesSelf-organized criticalityLiving cellsMolecular motorsCytoskeletonEnergy localizationSystem in vitroActinCondensed-matter systemsMyosinFeedback loopDistribution of energy releaseForce propagationAnderson localizationMechanical modesGlomerular mesangial cells derived complement factor H regulates complement activation, influences cell proliferation, and maintains actin cytoskeleton
Li Y, Ni X, Li X, Kang Y, Yuan X, Xu G, Wang T, Li D, Shi S, Lv J, Zhao M, Zhang H, Zhu L. Glomerular mesangial cells derived complement factor H regulates complement activation, influences cell proliferation, and maintains actin cytoskeleton. International Immunopharmacology 2025, 154: 114544. PMID: 40157080, DOI: 10.1016/j.intimp.2025.114544.Peer-Reviewed Original ResearchConceptsActin cytoskeletonGlomerular mesangial cellsInfluence cell proliferationCell proliferationSingle-cell sequencing dataComplement factor HNon-canonical functionsExpression of Cdc42Mesangial cellsSequence dataCell motilityAffecting cell proliferationCytoskeletonRegulate complement activationRegulatory roleCanonical functionActinComplement activationIndependent of complement activationFactor HIgA1-containing immune complexesComplement proteinsCellsComplement-induced damageExpressionFast Actin Disassembly and Fimbrin Mechanosensitivity Support Rapid Turnover in a Model of Clathrin‐Mediated Endocytosis
Mousavi S, Lacy M, Li X, Berro J. Fast Actin Disassembly and Fimbrin Mechanosensitivity Support Rapid Turnover in a Model of Clathrin‐Mediated Endocytosis. Cytoskeleton 2025 PMID: 40035221, DOI: 10.1002/cm.22002.Peer-Reviewed Original ResearchClathrin-mediated endocytosisActin filament disassemblyDynamics of actinActin-interacting proteinHigh membrane tensionActin meshworkEndocytic proteinsFilament disassemblyActin disassemblyNascent filamentsActin cytoskeletonEndocytic structuresEukaryotic cellsBinding partnersCellular processesTurgor pressureFimbrinActinRapid turnoverMembrane tensionEndocytosisProteinFilamentsDisassemblyYeast
2024
Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis
Ren Y, Yang J, Fujita B, Zhang Y, Berro J. Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis. Cell Reports 2024, 43: 114725. PMID: 39276354, PMCID: PMC11476202, DOI: 10.1016/j.celrep.2024.114725.Peer-Reviewed Original ResearchClathrin-mediated endocytosisF-actinActin cytoskeletonFission yeast Schizosaccharomyces pombeYeast Schizosaccharomyces pombeCell adhesion complexAdhesion complexesMembrane localizationPN forcesStable bindingEnd4pCross-regulationCytoskeletonActinEndocytosisMembraneBindingMechanical forcesTalinTransmission of forcesThatchForce transmissionDomainCellsFissionActive tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex
Sakamoto R, Murrell M. Active tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex. Physical Review Research 2024, 6: 033024. DOI: 10.1103/physrevresearch.6.033024.Peer-Reviewed Original ResearchActomyosin cortexCell membraneActin cytoskeletonCortical flowMembrane blebbingCell divisionCell migrationCytoskeletonActomyosinBiological phenomenaMembrane bulgesBlebsCellsMembraneViscoelastic fluidMechanical responseElastic stressesStress yieldActinUbiquitous structuresApoptosisMechanical stressMembrane elasticityPhysical behaviorF-actin architecture determines the conversion of chemical energy into mechanical work
Sakamoto R, Murrell M. F-actin architecture determines the conversion of chemical energy into mechanical work. Nature Communications 2024, 15: 3444. PMID: 38658549, PMCID: PMC11043346, DOI: 10.1038/s41467-024-47593-x.Peer-Reviewed Original ResearchConceptsF-actin architectureF-actinATP consumption rateF-actin bundlesIn vitro reconstitutionDynamic cellular processesHigher ATP consumptionActin cytoskeletonFilamentous actinMyosin motorsCellular processesATP hydrolysisPurified componentsAdenosine triphosphateForce generationConversion of chemical energyATP consumptionConsumption rateActinChemical energyMyosinNetwork contractionCytoskeletonEnergetic principlesHydrolysis
2023
Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz M, Calderwood D, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nature Communications 2023, 14: 8011. PMID: 38049429, PMCID: PMC10695988, DOI: 10.1038/s41467-023-43612-5.Peer-Reviewed Original ResearchConceptsF-actin architectureStress fibersCortical actinActin cytoskeletonMolecular tension sensorsF-actin stress fibersF-actin cytoskeletonFilamentous actin cytoskeletonMechanical forcesTension sensorCell divisionCytoskeletonCell migrationExtracellular matrixMyosin inhibitionActinDirection of stretchCellsCell axisUniaxial stretchStretchFRETDifferential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB
Zhou L, Jin C, Wang W, Song L, Shin J, Du T, Wu H. Differential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB. ELife 2023, 12: e90155. PMID: 37982489, PMCID: PMC10703445, DOI: 10.7554/elife.90155.Peer-Reviewed Original ResearchConceptsActin cytoskeletonRegulation of actin cytoskeletonMRTF-SRF pathwayModulating actin dynamicsCell actin cytoskeletonCuticular plateActin cytoskeleton organizationActin cytoskeleton activityTranscriptional regulation mechanismRNA-seq analysisF-actin intensityHair cell developmentProfiles of genesActin dynamicsCytoskeleton organizationTranscriptional regulationF-actinCalponin 2Cytoskeleton activityHair bundle morphologyTranscriptome analysisDifferential regulationCell developmentCell-specific deletionCytoskeletonForce redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors
Ren Y, Yang J, Fujita B, Jin H, Zhang Y, Berro J. Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors. Science Advances 2023, 9: eadi1535. PMID: 37831774, PMCID: PMC10575576, DOI: 10.1126/sciadv.adi1535.Peer-Reviewed Original ResearchConceptsActin cytoskeletonPlasma membraneHuntingtin Interacting Protein 1Clathrin-mediated endocytosisCountless cellular processesEndocytic machineryCellular processesClathrin latticesProtein condensationCytoskeletonEnd4pProtein 1Membrane deformationPiconewton forcesEndocytosisVivo force measurementsMembranePiconewtonsClathrinMachineryProteinCoatMolecular scale
2022
In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
Chen S, Sun Z, Murrell M. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles. Journal Of Visualized Experiments 2022 PMID: 36094272, DOI: 10.3791/64026.Peer-Reviewed Original ResearchConceptsGiant unilamellar vesiclesCytoskeleton networkLipid dropletsCell‐mimicking systemUnilamellar vesiclesActin cytoskeletonVitro reconstitutionGenetic regulationActin networkBiochemical regulationSynthetic biologyCellular activitiesLive cellsMixture of proteinsActin polymersLipid componentsVesiclesRegulationReconstitutionCellsCytoskeletonCell deformationMachineryBiologyQuantitative insightsLymphocyte Cytosolic Protein 1 (L-plastin) I232F Mutation Impairs Granulocytic Proliferation and Causes Neutropenia
Mahat U, Garg B, Yang CY, Mehta H, Hanna R, Rogers HJ, Flagg A, Ivanov AI, Corey SJ. Lymphocyte Cytosolic Protein 1 (L-plastin) I232F Mutation Impairs Granulocytic Proliferation and Causes Neutropenia. Blood Advances 2022, 6: 2581-2594. PMID: 34991157, PMCID: PMC9043934, DOI: 10.1182/bloodadvances.2021006398.Peer-Reviewed Original ResearchConceptsLymphocyte cytosolic protein 1Impaired cell motilityDiffuse intracellular localizationUnfolded protein responseCytosolic protein 1Level of genesCell cycle arrestActin regulationG2/M phaseNew genesActin cytoskeletonActin dynamicsCell motilityProtein responseSubcellular fractionationMutant formsF-actinIntracellular localizationWhole-exome sequencingCycle arrestHeLa cellsMissense mutationsHeterozygous missense mutationM phaseLCP1Daam2 Regulates Myelin Structure and the Oligodendrocyte Actin Cytoskeleton through Rac1 and Gelsolin
Cristobal C, Wang C, Zuo Z, Smith J, Lindeke-Myers A, Bellen H, Lee H. Daam2 Regulates Myelin Structure and the Oligodendrocyte Actin Cytoskeleton through Rac1 and Gelsolin. Journal Of Neuroscience 2022, 42: 1679-1691. PMID: 35101966, PMCID: PMC8896627, DOI: 10.1523/jneurosci.1517-21.2022.Peer-Reviewed Original ResearchConceptsGelsolin levelsOL differentiationMyelin sheathCNS functionMorphogenesis 2Motor coordination deficitsActin cytoskeletonWhite matter diseaseMyelin structureConditional knockout miceWhite matter developmentMyelin compactionMyelin decompactionNeuronal healthCKO miceCoordination deficitsFunctional myelinCompact myelin sheathKnockout miceWhite matterPostnatal developmentProper myelin formationOligodendrocytesMyelin formationOL cultures
2020
Amyloid-β Precursor Protein APP Down-Regulation Alters Actin Cytoskeleton-Interacting Proteins in Endothelial Cells
Ristori E, Cicaloni V, Salvini L, Tinti L, Tinti C, Simons M, Corti F, Donnini S, Ziche M. Amyloid-β Precursor Protein APP Down-Regulation Alters Actin Cytoskeleton-Interacting Proteins in Endothelial Cells. Cells 2020, 9: 2506. PMID: 33228083, PMCID: PMC7699411, DOI: 10.3390/cells9112506.Peer-Reviewed Original ResearchConceptsAmyloid-β precursor proteinCerebral amyloid angiopathyUbiquitous membrane proteinsFocal adhesion stabilityEndothelial cellsMajor cellular targetInteracting proteinActin cytoskeletonProteomic approachMembrane proteinsAlzheimer's diseaseMolecular mechanismsCellular responsesCellular targetsPhysiological roleRole of APPEndothelial cell proliferationPrecursor proteinCell proliferationNormal endothelial functionProteinNeuronal tissueGrowth factorExogenous stimuliExpressionHtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis
Gerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020, 216: 717-734. PMID: 32883702, PMCID: PMC7648574, DOI: 10.1534/genetics.120.303629.Peer-Reviewed Original ResearchConceptsGermline ring canalsRing canalsActin cytoskeletonF-actinDrosophila melanogaster oogenesisSomatic follicle cellsCombination of CRISPRF-actin accumulationF-actin recruitmentFilamentous actin cytoskeletonFemale germlineActin structuresFruit flyHigh fecundityFollicle cellsCytoskeletonGermlineOverexpressionAccumulationDrosophilaOogenesisMutagenesisCRISPRFilaminGenesSurfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling
Orbach R, Su X. Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling. Frontiers In Immunology 2020, 11: 2187. PMID: 33013920, PMCID: PMC7516127, DOI: 10.3389/fimmu.2020.02187.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonAnimalsCarrier ProteinsCell LineCell MembraneCell ShapeCyclodextrinsCytokinesGlycocalyxHumansLymphocyte ActivationMembrane LipidsMembrane ProteinsMiceMicrofilament ProteinsMicroscopy, Electron, ScanningMicrovilliReceptors, Antigen, T-CellSignal TransductionStress, MechanicalSurface PropertiesSynaptosomesT-LymphocytesConceptsFunctional consequencesFinger-like membrane protrusionsT cell signalingSuper-resolution microscopyLocal membrane curvatureActin cytoskeletonMembrane protrusionsSignal transductionCell signalingMembrane curvatureCurved membranesImmune signalingBiochemical activityUnique compartmentLymphocyte microvilliMicrovillus formationCell typesLocal membraneCytoskeletonSignalingMicrovilliMembraneBody of evidenceMembrane wavesImportant roleFunctional interactions of ion channels with the actin cytoskeleton: does coupling to dynamic actin regulate NMDA receptors?
Shaw JE, Koleske AJ. Functional interactions of ion channels with the actin cytoskeleton: does coupling to dynamic actin regulate NMDA receptors? The Journal Of Physiology 2020, 599: 431-441. PMID: 32034761, PMCID: PMC7416480, DOI: 10.1113/jp278702.Peer-Reviewed Original ResearchConceptsActin cytoskeletonIon channelsPostsynaptic compartmentsCytoskeletal protein actinActin binding proteinsNeurotransmitter release machineryNeurotransmitter receptorsProtein actinSynaptic neurotransmitter receptorsΑ-actininMolecular mechanismsBinding proteinCytoskeletonMolecular linkageFunctional interactionRelease machineryDiverse collectionActinNMDA receptorsTraffickingChannel openingProteinVoltage-gated NaReceptorsCompartmentsBile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration
Meyer K, Morales‐Navarrete H, Seifert S, Wilsch‐Braeuninger M, Dahmen U, Tanaka E, Brusch L, Kalaidzidis Y, Zerial M. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration. Molecular Systems Biology 2020, 16: msb198985. PMID: 32090478, PMCID: PMC7036714, DOI: 10.15252/msb.20198985.Peer-Reviewed Original ResearchConceptsActin cytoskeletonActive YAPMechanisms of organ size controlF-actin-rich regionsTranscriptional co-activator YAPSurface of hepatocytesOrgan size controlCo-activator YAPApical surface of hepatocytesApical surfaceF-actinAcid fluctuationsHippo signalingTissue homeostasisBile acidsMouse liver regenerationBile acid overloadYAPMechano-sensory systemsCytoskeletonAcid overloadActinBile canalicular networkLevels of bile acidsCanalicular network
2019
Reduction in SNAP-23 Alters Microfilament Organization in Myofibrobastic Hepatic Stellate Cells.
Eubanks HB, Lavoie EG, Goree J, Kamykowski JA, Gokden N, Fausther M, Dranoff JA. Reduction in SNAP-23 Alters Microfilament Organization in Myofibrobastic Hepatic Stellate Cells. Gene Expression 2019, 20: 25-37. PMID: 31757226, PMCID: PMC7284106, DOI: 10.3727/105221619x15742818049365.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActin Depolymerizing FactorsActinsAnimalsCarbon TetrachlorideCell LineCell MovementCell SeparationGene Knockdown TechniquesHepatic Stellate CellsHumansLiverLiver CirrhosisMiceMyofibroblastsQb-SNARE ProteinsQc-SNARE Proteinsrho-Associated KinasesRNA InterferenceRNA, Small InterferingSignal TransductionStress FibersWound HealingConceptsSNAP-23T-SNARE proteinsSpecific SNARE proteinsMyofibroblastic hepatic stellate cellsSNARE proteinsActin cytoskeletonActin dynamicsHepatic stellate cellsCytoskeletal reorganizationCell movementPlasma membraneHomologous proteinsExtracellular environmentMicrofilament organizationSNAP-25HSC phenotypeReceptor proteinProteinStellate cellsQuiescent hepatic stellate cellsPhenotypeCellsCritical effector cellsCytoskeletonVivoFilamin A mediates isotropic distribution of applied force across the actin network
Kumar A, Shutova MS, Tanaka K, Iwamoto DV, Calderwood DA, Svitkina TM, Schwartz MA. Filamin A mediates isotropic distribution of applied force across the actin network. Journal Of Cell Biology 2019, 218: 2481-2491. PMID: 31315944, PMCID: PMC6683746, DOI: 10.1083/jcb.201901086.Peer-Reviewed Original ResearchConceptsTalin tension sensorStress fibersActin networkFilamin ACortical actin networkCortical actin filamentsIntegrin-mediated adhesionActin cytoskeletonFocal adhesionsCortical actinFLNA knockdownActin filamentsTalinKnockdownCell sensingDirection of stretchTension sensorPhysiology of muscleUniaxial stretchForce transmissionCytoskeletonStrainsStretchAdhesionReexpressionProximity labeling reveals novel interactomes in live Drosophila tissue
Mannix KM, Starble RM, Kaufman RS, Cooley L. Proximity labeling reveals novel interactomes in live Drosophila tissue. Development 2019, 146: dev176644. PMID: 31208963, PMCID: PMC6679357, DOI: 10.1242/dev.176644.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAnimalsAnimals, Genetically ModifiedCell CommunicationCell DifferentiationCytological TechniquesCytoskeletonDNA-(Apurinic or Apyrimidinic Site) LyaseDrosophila melanogasterFemaleGenes, ReporterGerm CellsIntercellular JunctionsMolecular ImagingOocytesOogenesisProtein BindingProtein Interaction MapsStaining and LabelingConceptsProximity labelingIntercellular bridgesProximity-dependent biotinylationStable intercellular bridgesRC proteinDynamic actin cytoskeletonProtein interactome analysisRNA interference screenNovel interactomePrey genesUncharacterized proteinsDistinct interactomesDrosophila tissuesActin cytoskeletonInterference screenInteractome analysisLive tissueMultiple proteinsProximity ligationInteractomeGerm cellsIntercellular communicationRespective preyFunctional roleProtein
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply