2025
Selective presynaptic inhibition of leg proprioception in behaving Drosophila
Dallmann C, Luo Y, Agrawal S, Mamiya A, Chou G, Cook A, Sustar A, Brunton B, Tuthill J. Selective presynaptic inhibition of leg proprioception in behaving Drosophila. Nature 2025, 1-9. PMID: 40963018, DOI: 10.1038/s41586-025-09554-2.Peer-Reviewed Original ResearchPresynaptic inhibitionCalcium imagingInhibitory descending pathwaysClasses of interneuronsProprioceptive sensory neuronsSensory neuronsPassive leg movementGABAergic presynaptic inhibitionInterneuronsControl armDescending pathwaysCircuit mechanismsDescending inputsNeural circuitsDrosophilaAxonsLeg movementsProprioceptorsCalciumLeg proprioceptorsAn integrative systems-biology approach defines mechanisms of Alzheimer’s disease neurodegeneration
Leventhal M, Zanella C, Kang B, Peng J, Gritsch D, Liao Z, Bukhari H, Wang T, Pao P, Danquah S, Benetatos J, Nehme R, Farhi S, Tsai L, Dong X, Scherzer C, Feany M, Fraenkel E. An integrative systems-biology approach defines mechanisms of Alzheimer’s disease neurodegeneration. Nature Communications 2025, 16: 4441. PMID: 40393985, PMCID: PMC12092734, DOI: 10.1038/s41467-025-59654-w.Peer-Reviewed Original ResearchConceptsDisease proteomicsDrosophila model of Alzheimer's diseaseAlzheimer's diseaseDisease neurodegenerationSystems-biology approachAlzheimer's disease neurodegenerationModel of Alzheimer's diseaseModify gene expressionAge-associated neurodegenerationDrosophila modelTau proteinGenetic screeningGenetic variantsGene expressionRelevant pathwaysDNA damageAmeliorate neurodegenerationDrosophilaYears of intensive investigationNeural progenitor cellsProteomicsNeurodegenerationNeuronal deathAlzheimerProgenitor cellsNew dimensions in the molecular genetics of insect chemoreception
Talross G, Carlson J. New dimensions in the molecular genetics of insect chemoreception. Trends In Genetics 2025, 41: 706-715. PMID: 40340097, PMCID: PMC12324945, DOI: 10.1016/j.tig.2025.04.003.Peer-Reviewed Original ResearchMolecular geneticsChemosensory systemOdorant receptor genesRNA editingChemoreceptor expressionInsect chemoreceptionEpigenetic mechanismsLong noncoding RNAsOlfactory receptor neuronsNoncoding RNAsMolecular componentsReceptor geneTaste receptorsRNAReceptor neuronsChemoreceptionDrosophilaGenesNew insightsInsectsSpread disease
2024
cis- and trans-regulatory contributions to a hierarchy of factors influencing gene expression variation
Kalra S, Lanno S, Sanchez G, Coolon J. cis- and trans-regulatory contributions to a hierarchy of factors influencing gene expression variation. Communications Biology 2024, 7: 1563. PMID: 39587248, PMCID: PMC11589579, DOI: 10.1038/s42003-024-07255-6.Peer-Reviewed Original ResearchConceptsGene expression variationTrait variationExpression variationTrans-regulatory changesGene expression traitsSource of trait variationTrans-regulationExpression traitsDiverse organismsMolecular mechanismsDevelopmental stagesTransgenerational effectsGenesLife stagesTraitsDrosophilaGenomeEnvironmental responsibilityAssociated with changesMultiple different sourcesVariationFunction and evolution of Ir52 receptors in mate detection in Drosophila
Luo Y, Talross G, Carlson J. Function and evolution of Ir52 receptors in mate detection in Drosophila. Current Biology 2024, 34: 5395-5408.e6. PMID: 39471807, PMCID: PMC11614688, DOI: 10.1016/j.cub.2024.10.001.Peer-Reviewed Original ResearchMating partnersCluster of genesPotential mating partnersSexually dimorphic neuronsCourtship behaviorEvolutionary timeMate detectionExpression systemFly legFruit flyFly speciesSpeciesBiological problemsTaste neuronsMatingPheromone extractsFliesReceptorsDrosophilaCourtshipGenesNeuronsPheromoneCircuit mappingExpressionCdk8/CDK19 promotes mitochondrial fission through Drp1 phosphorylation and can phenotypically suppress pink1 deficiency in Drosophila
Liao J, Chung H, Shih C, Wong K, Dutta D, Nil Z, Burns C, Kanca O, Park Y, Zuo Z, Marcogliese P, Sew K, Bellen H, Verheyen E. Cdk8/CDK19 promotes mitochondrial fission through Drp1 phosphorylation and can phenotypically suppress pink1 deficiency in Drosophila. Nature Communications 2024, 15: 3326. PMID: 38637532, PMCID: PMC11026413, DOI: 10.1038/s41467-024-47623-8.Peer-Reviewed Original ResearchConceptsMitochondrial fissionRNA polymerase IINon-nuclear functionsDrp1-mediated fissionPhosphorylation of Drp1Elevated levels of ROSMitochondrial kinaseBang sensitivityLevels of PINK1Polymerase IIFly lifespanPhosphorylated Drp1PINK1 deficiencyDrp1 phosphorylationTranscriptional controlElongated mitochondriaLevels of ROSOverexpression of CDK8CDK8Drp1Mitochondrial dysmorphologyBehavioral defectsPINK1DrosophilaCytoplasmBase Recording: A Technique for Analyzing Responses of Taste Neurons in Drosophila.
Dweck H, Carlson J. Base Recording: A Technique for Analyzing Responses of Taste Neurons in Drosophila. Journal Of Visualized Experiments 2024 PMID: 38497660, PMCID: PMC11542164, DOI: 10.3791/66665.Peer-Reviewed Original ResearchPathways controlling neurotoxicity and proteostasis in mitochondrial complex I deficiency
Nithianandam V, Sarkar S, Feany M. Pathways controlling neurotoxicity and proteostasis in mitochondrial complex I deficiency. Human Molecular Genetics 2024, 33: 860-871. PMID: 38324746, PMCID: PMC11070137, DOI: 10.1093/hmg/ddae018.Peer-Reviewed Original ResearchConceptsComplex I deficiencyI deficiencyElectron transport chain componentsMitochondrial complex I deficiencyMitochondrial respiratory chainProteostasis failureMitochondrial genesProteostasis machineryDrosophila retinaProteostasis dysfunctionGenetic screeningProteostasisRespiratory chainAge-related neurodegenerationProtein degradationMitochondrial encephalomyopathyComplex IKinome screenGenetic modelsChain componentsNeurodegenerationProteinPathwayOxidative stressDrosophilaMechanical plasticity of cell membranes enhances epithelial wound closure
Ton A, MacKeith A, Shattuck M, O'Hern C. Mechanical plasticity of cell membranes enhances epithelial wound closure. Physical Review Research 2024, 6: l012036. DOI: 10.1103/physrevresearch.6.l012036.Peer-Reviewed Original ResearchLarval wing discsWing discEmbryonic ectodermWing disc epitheliumCell membraneDeformable particlesDisc epitheliumElasto-plastic responseCell mechanicsPlastic deformationClosure behaviorDrosophilaCell morphologyDevelopmental stagesDP simulationsMechanical responseElastic responseEctodermLarvalMechanical plasticityCellsMembraneEpithelial wound closureEpithelial wound healingWound closure
2023
A Drosophila model relevant to chemotherapy-related cognitive impairment
Torre M, Bukhari H, Nithianandam V, Zanella C, Mata D, Feany M. A Drosophila model relevant to chemotherapy-related cognitive impairment. Scientific Reports 2023, 13: 19290. PMID: 37935827, PMCID: PMC10630312, DOI: 10.1038/s41598-023-46616-9.Peer-Reviewed Original ResearchConceptsChemotherapy-related cognitive impairmentAdverse effects of treatmentDrosophila modelChemotherapeutic agent cisplatinDisease-modifying therapiesTesting chemotherapyEffects of treatmentNeurological deficitsImmunohistochemical analysisDissection of pathwaysChemotherapy patientsAgent cisplatinHistological alterationsDrosophila tissuesAdult DrosophilaChemotherapyDrosophilaAdverse effectsGenetic approachesMemory deficitsOxidative stressCisplatinCancer survivorsDoxorubicinMechanistic dissectionGlia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
Scott H, Novikov B, Ugur B, Allen B, Mertsalov I, Monagas-Valentin P, Koff M, Robinson S, Aoki K, Veizaj R, Lefeber D, Tiemeyer M, Bellen H, Panin V. Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila. ELife 2023, 12: e78280. PMID: 36946697, PMCID: PMC10110239, DOI: 10.7554/elife.78280.Peer-Reviewed Original ResearchConceptsSialylation pathwayCMP-sialic acid synthetaseStress toleranceAnimal developmentProtein functionVoltage-gated sodium channelsGlycan terminiNeural transmissionDedicated pathwaysGenesDifferent cellsPathwayOxidative stressSodium channelsSialic acidNervous systemNeural excitabilitySialylationToleranceNormal levelsNeural functionDrosophilaTerminusExcitabilitySynthetaseEvolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesis
Price K, Tharakan D, Cooley L. Evolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesis. Developmental Cell 2023, 58: 474-488.e5. PMID: 36898376, PMCID: PMC10059090, DOI: 10.1016/j.devcel.2023.02.008.Peer-Reviewed Original ResearchConceptsCanal formationStable intercellular bridgesGerm cell divisionMidbody ringTime-lapse imagingFemale germlineCell cytokinesisDrosophila malesRing canalsComplete cytokinesisKinase functionCell divisionCytokinesis eventsBroad functionsCytokinesisIntercellular bridgesExtensive remodelingMidbodyDrosophilaBiological systemsDisease statesImportant insightsGametogenesisGermlineProtein
2022
Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii
Wang W, Dweck H, Talross G, Zaidi A, Gendron J, Carlson J. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. ELife 2022, 11: e81703. PMID: 36398882, PMCID: PMC9674340, DOI: 10.7554/elife.81703.Peer-Reviewed Original ResearchConceptsEgg-laying preferenceTaste organsAgricultural pestsDrosophila suzukiiChannel genesStiff substratesDrosophilaTaste sensillaReceptor geneMechanosensory cuesFruit sugarsGenesMechanosensationTaste sensationBitter taste sensationSpeciesEggsSweet taste sensationMajor subsetSuzukiiPestsSugarsElectrophysiological responsesWeak preferenceVariety of changesTwo neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila
Bosch J, Ugur B, Pichardo-Casas I, Rabasco J, Escobedo F, Zuo Z, Brown B, Celniker S, Sinclair D, Bellen H, Perrimon N. Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila. ELife 2022, 11: e82709. PMID: 36346220, PMCID: PMC9681215, DOI: 10.7554/elife.82709.Peer-Reviewed Original ResearchConceptsSmall open reading framesClasses of genesShares sequence similarityOpen reading frameSequence similarityBicistronic transcriptBiological functionsPhenotypic analysisMitochondrial functionImportant regulatorThousands of peptidesNeuronal functionGenesWealth of informationTranscriptsAnimal lethalityPeptidesRecent studiesParalogsDrosophilaSmORFsMitochondriaRegulatorRegulatesNeuronal peptidesMeeting a threat of the Anthropocene: Taste avoidance of metal ions by Drosophila
Xiao S, Baik LS, Shang X, Carlson JR. Meeting a threat of the Anthropocene: Taste avoidance of metal ions by Drosophila. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2204238119. PMID: 35700364, PMCID: PMC9231609, DOI: 10.1073/pnas.2204238119.Peer-Reviewed Original ResearchConceptsGenerations of exposureDipteran speciesAnthropogenic stressorsGR familyEnvironmental changesToxic chemical compoundsBitter-sensing neuronsTaste organsTaste receptorsAvoidance of feedingSugar-sensing neuronsElevated concentrationsZinc ionsDrosophilaChemical compoundsInsectsHuman activitiesBehavioral responsesReceptorsOrganismsFliesSpeciesNeuronsRapid rateDifferent subsetsAn incentive circuit for memory dynamics in the mushroom body of Drosophila melanogaster
Gkanias E, McCurdy LY, Nitabach MN, Webb B. An incentive circuit for memory dynamics in the mushroom body of Drosophila melanogaster. ELife 2022, 11: e75611. PMID: 35363138, PMCID: PMC8975552, DOI: 10.7554/elife.75611.Peer-Reviewed Original ResearchConceptsFlexible behavioral controlConditioning paradigmNeural mechanismsNegative reinforcementMemory acquisitionBehavioral controlMemory dynamicsExploration/exploitationDrosophila melanogasterPlasticity rulesMushroom bodiesComputational modellingAcquisitionMemorySpecific neuronsStimuliDifferent rolesParadigmDrosophilaMelanogasterInsectsShort termFindingsNeuronsDopaminergicIr56b is an atypical ionotropic receptor that underlies appetitive salt response in Drosophila
Dweck HKM, Talross GJS, Luo Y, Ebrahim SAM, Carlson JR. Ir56b is an atypical ionotropic receptor that underlies appetitive salt response in Drosophila. Current Biology 2022, 32: 1776-1787.e4. PMID: 35294865, PMCID: PMC9050924, DOI: 10.1016/j.cub.2022.02.063.Peer-Reviewed Original ResearchConceptsSalt tasteBitter-sensing neuronsStop codonLoss of functionNumber of speciesIonotropic receptorsIonotropic receptor familyN-terminal regionReceptor familyNeuronsDrosophila speciesPremature stop codonTaste modalitiesAncient functionGR familySalt responseSense codonsMolecular basisAtypical memberSalt detectionModalitiesCodonSensory modalitiesDrosophilaBehavioral responsesParallel locomotor control strategies in mice and flies
Gonçalves AI, Zavatone-Veth JA, Carey MR, Clark DA. Parallel locomotor control strategies in mice and flies. Current Opinion In Neurobiology 2022, 73: 102516. PMID: 35158168, PMCID: PMC12103226, DOI: 10.1016/j.conb.2022.01.001.Peer-Reviewed Original Research
2021
Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila development
Xia S, VanKuren NW, Chen C, Zhang L, Kemkemer C, Shao Y, Jia H, Lee U, Advani AS, Gschwend A, Vibranovski MD, Chen S, Zhang YE, Long M. Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila development. PLOS Genetics 2021, 17: e1009654. PMID: 34242211, PMCID: PMC8270118, DOI: 10.1371/journal.pgen.1009654.Peer-Reviewed Original ResearchConceptsNew genesPhenotypic effectsEssential functionsLong evolutionary time scalesDevelopment of DrosophilaEvolutionary time scalesDrosophila developmentDrosophila genusEssential genesGene essentialityRNAi libraryYoung genesGenomic analysisCRISPR knockoutKnockout approachGenetic basisKnockdown experimentsComputational identificationGene effectsGenesDuplicate copiesRapid evolutionDrosophilaKnockdown efficiencyDistant ancestorsAn ammonium transporter is a non-canonical olfactory receptor for ammonia
Vulpe A, Kim HS, Ballou S, Wu ST, Grabe V, Nava Gonzales C, Liang T, Sachse S, Jeanne JM, Su CY, Menuz K. An ammonium transporter is a non-canonical olfactory receptor for ammonia. Current Biology 2021, 31: 3382-3390.e7. PMID: 34111404, PMCID: PMC8355169, DOI: 10.1016/j.cub.2021.05.025.Peer-Reviewed Original ResearchConceptsOlfactory receptorsGenetic model organism Drosophila melanogasterModel organism Drosophila melanogasterAmmonium transporter familyCanonical olfactory receptorsIon channel functionAmmonium transportersInsect speciesDrosophila melanogasterMost insectsMutant fliesFirst transporterParticular olfactory receptorTransporter familyAgricultural pestsHematophagous insectsEctopic expressionDrosophilaInsectsChannel functionWidespread importanceAmmonia sensitivitySpeciesTransportersReceptors
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply