2024
TRACERx analysis identifies a role for FAT1 in regulating chromosomal instability and whole-genome doubling via Hippo signalling
Lu W, Zalmas L, Bailey C, Black J, Martinez-Ruiz C, Pich O, Gimeno-Valiente F, Usaite I, Magness A, Thol K, Webber T, Jiang M, Saunders R, Liu Y, Biswas D, Ige E, Aerne B, Grönroos E, Venkatesan S, Stavrou G, Karasaki T, Al Bakir M, Renshaw M, Xu H, Schneider-Luftman D, Sharma N, Tovini L, Jamal-Hanjani M, McClelland S, Litchfield K, Birkbak N, Howell M, Tapon N, Fugger K, McGranahan N, Bartek J, Kanu N, Swanton C. TRACERx analysis identifies a role for FAT1 in regulating chromosomal instability and whole-genome doubling via Hippo signalling. Nature Cell Biology 2024, 27: 154-168. PMID: 39738653, PMCID: PMC11735399, DOI: 10.1038/s41556-024-01558-w.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCadherinsCarcinoma, Non-Small-Cell LungCell Line, TumorChromosomal InstabilityGene Expression Regulation, NeoplasticHippo Signaling PathwayHumansLung NeoplasmsMiceMitosisProtein Serine-Threonine KinasesSignal TransductionTranscription FactorsYAP-Signaling ProteinsConceptsWhole-genome doublingStructural chromosome instabilityChromosomal instabilityHomologous recombinationNumerical chromosome instabilityNon-small-cell lung cancerHR deficiencyPersistent replication stressGenome doublingRadial chromosomesHippo signalingReplication stressChromosomal translocationsEvolutionary adaptationDriver eventsGenetic alterationsFAT1Increased tumor heterogeneityChromosomeCO depletionYAP1Downstream mechanismsRepair deficiencyIntratumour heterogeneityExperimental approach
2023
Bulk and single-nucleus RNA sequencing highlight immune pathways induced in individuals during an Ixodes scapularis tick bite
Tang X, Lynn G, Cui Y, Cerny J, Arora G, Tomayko M, Craft J, Fikrig E. Bulk and single-nucleus RNA sequencing highlight immune pathways induced in individuals during an Ixodes scapularis tick bite. Infection And Immunity 2023, 91: e00282-23. PMID: 37846980, PMCID: PMC10652856, DOI: 10.1128/iai.00282-23.Peer-Reviewed Original ResearchConceptsRNA sequencingSingle-nucleus RNA sequencingBulk RNA sequencingInterleukin-17 signalingPlatelet activation pathwaysLaboratory guinea pigsSnRNA-seqHippo signalingIndividual genesPeripheral bloodTick biteAdaptive immunityAnti-tick vaccinesGuidance pathwayImmune pathwaysNew biomarkersHost responseGuinea pigsHematophagous arthropodsHost defenseCell adhesionTick attachmentNovel insightsTick feedingPhysiological consequences
2020
Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration
Meyer K, Morales‐Navarrete H, Seifert S, Wilsch‐Braeuninger M, Dahmen U, Tanaka E, Brusch L, Kalaidzidis Y, Zerial M. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration. Molecular Systems Biology 2020, 16: msb198985. PMID: 32090478, PMCID: PMC7036714, DOI: 10.15252/msb.20198985.Peer-Reviewed Original ResearchConceptsActin cytoskeletonActive YAPMechanisms of organ size controlF-actin-rich regionsTranscriptional co-activator YAPSurface of hepatocytesOrgan size controlCo-activator YAPApical surface of hepatocytesApical surfaceF-actinAcid fluctuationsHippo signalingTissue homeostasisBile acidsMouse liver regenerationBile acid overloadYAPMechano-sensory systemsCytoskeletonAcid overloadActinBile canalicular networkLevels of bile acidsCanalicular network
2019
Identification of the kinase STK25 as an upstream activator of LATS signaling
Lim S, Hermance N, Mudianto T, Mustaly H, Mauricio I, Vittoria M, Quinton R, Howell B, Cornils H, Manning A, Ganem N. Identification of the kinase STK25 as an upstream activator of LATS signaling. Nature Communications 2019, 10: 1547. PMID: 30948712, PMCID: PMC6449379, DOI: 10.1038/s41467-019-09597-w.Peer-Reviewed Original ResearchConceptsHippo signalingHippo pathwayHippo tumor suppressor pathwayTranscriptional co-activator YAPActivation loop phosphorylationCo-activator YAPCore pathway componentsYAP/TAZ activationTumor suppressor pathwayKey unresolved questionLoop phosphorylationHippo activationPhosphorylation eventsHydrophobic motifTissue homeostasisTAZ activationUpstream activatorKinase activatorPathway componentsSuppressor pathwaySTK25Human cancersFunctional inactivationCellular proliferationSignaling
2018
Tension-dependent regulation of mammalian Hippo signaling through LIMD1
Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine K. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. Journal Of Cell Science 2018, 131: jcs214700. PMID: 29440237, PMCID: PMC5897721, DOI: 10.1242/jcs.214700.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdherens JunctionsAnimalsCarrier ProteinsCell CountCell ProliferationCo-Repressor ProteinsCytoskeletal ProteinsCytoskeletonDogsHEK293 CellsHippo Signaling PathwayHumansIntracellular Signaling Peptides and ProteinsLIM Domain ProteinsMechanotransduction, CellularPhosphoproteinsProtein Serine-Threonine Kinasesrho-Associated KinasesSignal TransductionTranscription FactorsTumor Suppressor ProteinsYAP-Signaling ProteinsConceptsMammalian Hippo signalingHippo signalingLATS kinasesFamily proteinsRegulation of Lats kinasesLocalization to adherens junctionsRegulation of Hippo signalingJunctional localizationDensity-dependent regulationRho-mediatedRho activationAdherens junctionsAjubaLIMD1Biomechanical cuesKinaseJunctional complexesRhoCell densityProteinPathwayRegulationWTIPCytoskeletonSignal
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply