2025
Fast Actin Disassembly and Fimbrin Mechanosensitivity Support Rapid Turnover in a Model of Clathrin‐Mediated Endocytosis
Mousavi S, Lacy M, Li X, Berro J. Fast Actin Disassembly and Fimbrin Mechanosensitivity Support Rapid Turnover in a Model of Clathrin‐Mediated Endocytosis. Cytoskeleton 2025 PMID: 40035221, DOI: 10.1002/cm.22002.Peer-Reviewed Original ResearchClathrin-mediated endocytosisActin filament disassemblyDynamics of actinActin-interacting proteinHigh membrane tensionActin meshworkEndocytic proteinsFilament disassemblyActin disassemblyNascent filamentsActin cytoskeletonEndocytic structuresEukaryotic cellsBinding partnersCellular processesTurgor pressureFimbrinActinRapid turnoverMembrane tensionEndocytosisProteinFilamentsDisassemblyYeast
2024
Bending stiffness of Toxoplasma gondii actin filaments
Cao W, Sladewski T, Heaslip A, De La Cruz E. Bending stiffness of Toxoplasma gondii actin filaments. Journal Of Biological Chemistry 2024, 301: 108101. PMID: 39706262, PMCID: PMC11786770, DOI: 10.1016/j.jbc.2024.108101.Peer-Reviewed Original ResearchConceptsActin filamentsD-loopMechanical properties of actin filamentsFilament subunitsSkeletal muscle actin filamentsProperties of actin filamentsSkeletal muscle actinMuscle actin filamentsFilament length distributionApicomplexan parasite Toxoplasma gondiiIntersubunit salt bridgesOrganelle inheritancePointed-endSubunit interactionsNeighboring subunitUnique assembly propertiesSalt bridgesSubunitFunctional consequencesSubunit dissociationVisible densityActinSubunit incorporationParasite Toxoplasma gondiiFilamentsCofilin-Mediated Filament Softening and Crosslinking Counterbalance to Enhance Actin Network Flexibility
Sun Z, Murrell M. Cofilin-Mediated Filament Softening and Crosslinking Counterbalance to Enhance Actin Network Flexibility. Physical Review Letters 2024, 133: 218402. PMID: 39642486, DOI: 10.1103/physrevlett.133.218402.Peer-Reviewed Original ResearchActin-binding proteinsF-actin networkF-actinCrosslinking proteinsF-actin crosslinking proteinCrosslinks F-actinF-actin filamentsTransmission of mechanical forcesCofilin concentrationFilamentous-actinAccessory proteinsCell cytoskeletonCell divisionCell shapeCofilinBinding proteinCell migrationFilament flexibilityProteinDisulfide bondsFilament levelFilamentsCellsMechanical forcesLow pHHigh-resolution yeast actin structures indicate the molecular mechanism of actin filament stiffening by cations
Xu X, Cao W, Swift M, Pandit N, Huehn A, Sindelar C, De La Cruz E, Hanein D, Volkmann N. High-resolution yeast actin structures indicate the molecular mechanism of actin filament stiffening by cations. Communications Chemistry 2024, 7: 164. PMID: 39079963, PMCID: PMC11289367, DOI: 10.1038/s42004-024-01243-x.Peer-Reviewed Original ResearchActin filamentsVertebrate actinsActin structuresDNase I binding loopActin filament assemblyEukaryotic cell functionStructures of wild-typeNear-atomic resolution structuresPotential binding sitesActin subunitsFilament assemblyRegulatory proteinsDNase IA167ActinAdjacent subunitsRegulatory roleMolecular mechanismsVertebratesWild-typeGlutamic acidCell functionFilamentsSubunitResiduesMechanism of phosphate release from actin filaments
Wang Y, Wu J, Zsolnay V, Pollard T, Voth G. Mechanism of phosphate release from actin filaments. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2408156121. PMID: 38980907, PMCID: PMC11260136, DOI: 10.1073/pnas.2408156121.Peer-Reviewed Original ResearchConceptsCryo-EM structureAll-atom molecular dynamics simulationsATP-actinRate of phosphate releaseActin filamentsMechanism of phosphate releaseMolecular dynamics simulationsPhosphate releaseDissociation of phosphateR177Salt bridgesHydrogen bondsEnergy barrierDynamics simulationsComputational studyRelease of phosphateFilamentsRelease pathwayInternal cavityResiduesStudy residuesOccluding interactionsGatePrimary eventD179Growth‐induced collective bending and kinetic trapping of cytoskeletal filaments
Banerjee D, Freedman S, Murrell M, Banerjee S. Growth‐induced collective bending and kinetic trapping of cytoskeletal filaments. Cytoskeleton 2024, 81: 409-419. PMID: 38775207, PMCID: PMC12039077, DOI: 10.1002/cm.21877.Peer-Reviewed Original ResearchActin networkFilamentous growthActin filamentsTurnover of actin filamentsActin filament growthKinetic trapsActin poolFilament polymerizationActin cortexCytoskeletal filamentsSubunit poolActinFilamentsSubunitConsequence of growthFilament mechanismNematic defectsCrowded environmentLong-livedGrowthPoolAbundanceBending patternCellsTurnoverUnveiling the secrets of vimentin filament architecture relevant to human disease
Lomakin I, Ho M, Bunick C. Unveiling the secrets of vimentin filament architecture relevant to human disease. Nature Structural & Molecular Biology 2024, 31: 849-851. PMID: 38684931, PMCID: PMC11955283, DOI: 10.1038/s41594-024-01301-x.Peer-Reviewed Original ResearchCryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex
Chavali S, Chou S, Cao W, Pollard T, De La Cruz E, Sindelar C. Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex. Nature Communications 2024, 15: 2059. PMID: 38448439, PMCID: PMC10918085, DOI: 10.1038/s41467-024-46179-x.Peer-Reviewed Original ResearchConceptsArp2/3 complexActin filamentsCryo-EM structureMother filamentDaughter filamentArp2/3 complex nucleates branched actin filamentsActin filament branchingBranched actin filamentsDissociation of PiADP-PiFilament branchingOrganelle movementADP stateBranch junctionsArp3A-resolutionActinArp2/3ADP-BeFxFilamentsADPPhosphate releaseFilament mechanismArp2OrganellesToxoplasma gondii actin filaments are tuned for rapid disassembly and turnover
Hvorecny K, Sladewski T, De La Cruz E, Kollman J, Heaslip A. Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover. Nature Communications 2024, 15: 1840. PMID: 38418447, PMCID: PMC10902351, DOI: 10.1038/s41467-024-46111-3.Peer-Reviewed Original ResearchConceptsActin filamentsDynamic properties of actin filamentsProperties of actin filamentsCytoskeletal protein actinFilamentous actin networkSkeletal muscle actinCryo-EM structureIn vitro assemblyOrganelle inheritanceD-loopActin networkNucleotide exchangeLive cell imagingProteins actinSkeletal actinConserved structureEvolutionary changesActinApicomplexan parasitesAssembly contactsIntracellular parasitesMonomer dissociationApicomplexanFilamentsBiophysical properties
2023
Discovery of the first unconventional myosin: Acanthamoeba myosin-I
Pollard T, Korn E. Discovery of the first unconventional myosin: Acanthamoeba myosin-I. Frontiers In Physiology 2023, 14: 1324623. PMID: 38046947, PMCID: PMC10693453, DOI: 10.3389/fphys.2023.1324623.Peer-Reviewed Original ResearchUnconventional myosinActin filamentsMyosin heavy chain kinaseFirst unconventional myosinsEvolution of eukaryotesClass I MyosinHeavy chain kinaseNovel unconventional myosinPhylogenetic analysisSlime moldMembrane lipidsChain kinaseProteolytic fragmentsHeavy chainMuscle myosinMyosinCofactorEnzymeMg-ATPaseMg-ATPase activityEukaryotesFilamentsCrude enzymeKinaseActinCryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments
Huang X, Torre I, Chiappi M, Yin Z, Vydyanath A, Cao S, Raschdorf O, Beeby M, Quigley B, de Tombe P, Liu J, Morris E, Luther P. Cryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments. Journal Of Muscle Research And Cell Motility 2023, 44: 165-178. PMID: 37115473, PMCID: PMC10542292, DOI: 10.1007/s10974-023-09647-3.Peer-Reviewed Original ResearchConceptsMyBP-CMyosin-binding protein CCryo-electron tomographyStripes 4Binding protein CRod-shaped proteinN-terminal domainC-terminal regionCardiac MyBP-CActin filamentsAccessory proteinsCentral domainMyosin headsSubtomogram averagingActinMyosinTokuyasu cryosectionsProtein CCardiac muscleFilamentsProteinStripesC-zoneDependent fashionA-band
2021
Structure of Geobacter pili reveals secretory rather than nanowire behaviour
Gu Y, Srikanth V, Salazar-Morales AI, Jain R, O’Brien J, Yi SM, Soni RK, Samatey FA, Yalcin SE, Malvankar NS. Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 2021, 597: 430-434. PMID: 34471289, PMCID: PMC9127704, DOI: 10.1038/s41586-021-03857-w.Peer-Reviewed Original ResearchConceptsExtracellular electron transferType 4 piliElectron transferProtein nanowiresCryo-electron microscopyNanowiresNanowire behaviorGeobacter piliC-terminal residuesTranslocation machineryAssembly architectureLoss of secretionMajor phylaGeobacter speciesPrevious structural analysisSurface appendagesGeobacter sulfurreducensAromatic side chainsPiliPilAΠ stackingWidespread effectsBioelectronicsMicroorganismsFilaments
2020
Pulling the springs of a cell by single-molecule force spectroscopy
Mukherjee C, Bera M, Ainavarapu S, Sengupta K. Pulling the springs of a cell by single-molecule force spectroscopy. Emerging Topics In Life Sciences 2020, 5: 77-87. PMID: 33284963, DOI: 10.1042/etls20200254.Peer-Reviewed Original ResearchConceptsSingle-molecule force spectroscopyFilamentous proteinsForce spectroscopyExtracellular matrix proteinsNucleoskeletal proteinsTraction forceMatrix proteinsNecessary anchorageProteinIntermediate filamentsWhole cellsCurrent understandingTissue repairFundamental unitCellsBiochemical changesFibrillar networkMechanotransductionMicrotubulesMicrofilamentsECMFilamentsRegenerationNucleusThe actin polymerization factor Diaphanous and the actin severing protein Flightless I collaborate to regulate sarcomere size
Deng S, Silimon R, Balakrishnan M, Bothe I, Juros D, Soffar D, Baylies M. The actin polymerization factor Diaphanous and the actin severing protein Flightless I collaborate to regulate sarcomere size. Developmental Biology 2020, 469: 12-25. PMID: 32980309, PMCID: PMC8279456, DOI: 10.1016/j.ydbio.2020.09.014.Peer-Reviewed Original ResearchConceptsActin thin filamentsFlightless IRegulate thin filament lengthContractile unit of muscleControl actin dynamicsActin polymerization factorsThin filamentsDrosophila flight muscleMyosin thick filamentsThin filament lengthSarcomere sizeActin regulatorsActin dynamicsFlight musclesThick filamentsActinMuscle developmentFilament lengthContractile unitsPolymerization factorsFunction of muscle fibersFilamentsSarcomereRegulationForminForce and phosphate release from Arp2/3 complex promote dissociation of actin filament branches
Pandit NG, Cao W, Bibeau J, Johnson-Chavarria EM, Taylor EW, Pollard TD, De La Cruz EM. Force and phosphate release from Arp2/3 complex promote dissociation of actin filament branches. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 13519-13528. PMID: 32461373, PMCID: PMC7306818, DOI: 10.1073/pnas.1911183117.Peer-Reviewed Original ResearchConceptsActin filament branchesArp2/3 complexMother filamentFilament branchesTotal internal reflection fluorescence microscopyEssential cellular functionsMechanical forcesActin filament networkReflection fluorescence microscopyCellular functionsActin networkCell motilityComplex generatesActin filamentsArp2/3Filament networkFluorescence microscopyState 1Branch junctionsState 2FilamentsComplexesPhosphate releaseMuscle actinADPAn asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete
Gibson KH, Trajtenberg F, Wunder EA, Brady MR, San Martin F, Mechaly A, Shang Z, Liu J, Picardeau M, Ko A, Buschiazzo A, Sindelar CV. An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete. ELife 2020, 9: e53672. PMID: 32157997, PMCID: PMC7065911, DOI: 10.7554/elife.53672.Peer-Reviewed Original ResearchConceptsCryo-electron tomographyKey functional attributesNative flagellar filamentsHigh-resolution cryo-electron tomographyPeriplasmic spaceSheath proteinStructural basisFlagellar filamentsLeptospira spirochetesSpirochete bacteriaEntire cellFunctional attributesX-ray crystallographyImportant pathogenSupercoilingMotilityBacteriaFilamentsCell bodiesFlagellaSpirochetesProteinFlagellinDistinctive meansEndoflagella
2019
Visualization and Functional Analysis of Spindle Actin and Chromosome Segregation in Mammalian Oocytes
Mogessie B. Visualization and Functional Analysis of Spindle Actin and Chromosome Segregation in Mammalian Oocytes. Methods In Molecular Biology 2019, 2101: 267-295. PMID: 31879910, PMCID: PMC9703194, DOI: 10.1007/978-1-0716-0219-5_17.Peer-Reviewed Original ResearchConceptsSpindle actinChromosome segregationAccurate chromosome segregationImmunofluorescence microscopy assayMammalian oocytesActin filamentsSpindle machineryMicroscopy assaysActinOocyte meiosisFunctional analysisMeiotic spindleChromosomeSegregationEukaryotesSpindleOocytesMeiosisMicrotubulesMachineryFilamentsAssayThree-dimensional structure of the basketweave Z-band in midshipman fish sonic muscle
Burgoyne T, Heumann J, Morris E, Knupp C, Liu J, Reedy M, Taylor K, Wang K, Luther P. Three-dimensional structure of the basketweave Z-band in midshipman fish sonic muscle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 15534-15539. PMID: 31320587, PMCID: PMC6681754, DOI: 10.1073/pnas.1902235116.Peer-Reviewed Original ResearchConceptsActin filamentsA-actininStructure of actinArrays of actinActin filament axisPlainfin midshipman fishThree-dimensional structureMidshipman fishMyosin filamentsActinSonic musclesZ-bandsSarcomere overlapTransmit tensionFilamentsFilament axisSarcomereStriated MuscleElectron tomographyCrystallographic structureMyosinElectron micrographsSubtomogramProteinCross-linkingA composition-dependent molecular clutch between T cell signaling condensates and actin
Ditlev JA, Vega AR, Köster DV, Su X, Tani T, Lakoduk AM, Vale RD, Mayor S, Jaqaman K, Rosen MK. A composition-dependent molecular clutch between T cell signaling condensates and actin. ELife 2019, 8: e42695. PMID: 31268421, PMCID: PMC6624021, DOI: 10.7554/elife.42695.Peer-Reviewed Original ResearchThe Post-Synaptic Function of Brca2
Wang CX, Jimenez-Sainz J, Jensen RB, Mazin AV. The Post-Synaptic Function of Brca2. Scientific Reports 2019, 9: 4554. PMID: 30872704, PMCID: PMC6418147, DOI: 10.1038/s41598-019-41054-y.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksHomologous recombinationMammalian cellsRegulation of HRDisplacement loop (D-loop) structureDouble-strand breaksPresynaptic nucleoprotein filamentHigh-fidelity processRAD51 activityGenetic diversityNucleoprotein filamentDSB repairHomologous dsDNAD-loopPost-synaptic functionRAD51Mechanistic underpinningsBiologic functionsUnexpected activityLoop structureBRCA2SsDNAFilamentsCellsDiversity
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply