2025
Feedback between F-actin organization and active stress governs criticality and energy localization in the cell cytoskeleton
Sun Z, Zimmerberg N, Kelly P, Floyd C, Papoian G, Murrell M. Feedback between F-actin organization and active stress governs criticality and energy localization in the cell cytoskeleton. Nature Physics 2025, 1-13. DOI: 10.1038/s41567-025-02919-4.Peer-Reviewed Original ResearchF-actin organizationF-actinNucleation-promoting factorsMyosin II motorsF-actin filamentsDynamic structural reorganizationActin cytoskeletonCytoskeletal dynamicsCellular self-organizationCell cytoskeletonBiological processesSelf-organized criticalityLiving cellsMolecular motorsCytoskeletonEnergy localizationSystem in vitroActinCondensed-matter systemsMyosinFeedback loopDistribution of energy releaseForce propagationAnderson localizationMechanical modesHigh-resolution structures of Myosin-IC reveal a unique actin-binding orientation, ADP release pathway, and power stroke trajectory
Chavali S, Carman P, Shuman H, Ostap E, Sindelar C. High-resolution structures of Myosin-IC reveal a unique actin-binding orientation, ADP release pathway, and power stroke trajectory. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2415457122. PMID: 40014570, PMCID: PMC11892617, DOI: 10.1073/pnas.2415457122.Peer-Reviewed Original ResearchConceptsN-terminal extensionATP bindingRegulating ATP bindingADP releaseClass I myosinsLever arm swingStructure of myosinCryo-EM structureHigh-resolution structuresMembrane-bound vesiclesActin interfaceMyosin superfamilyMyosin familyActin filamentsAbsence of ADPMembrane remodelingNucleotide pocketMotile behaviorMyo1cPlasma membraneBiological functionsActinCryo-EM dataMotor domainMyosin
2024
Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model
Sakamoto R, Murrell M. Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model. Communications Biology 2024, 7: 840. PMID: 38987288, PMCID: PMC11236970, DOI: 10.1038/s42003-024-06528-4.Peer-Reviewed Original ResearchConceptsF-actin networkF-actinF-actin architectureMembrane shape changesCell shape changesActivity of myosinInduce membrane deformationActomyosin contractilityShape changesActin cortexActomyosin cortexGiant unilamellar vesiclesActinMembrane deformationUnilamellar vesiclesCell modelNo-slip boundariesForce generationActomyosinMyosinVesiclesForce transmissionF-actin architecture determines the conversion of chemical energy into mechanical work
Sakamoto R, Murrell M. F-actin architecture determines the conversion of chemical energy into mechanical work. Nature Communications 2024, 15: 3444. PMID: 38658549, PMCID: PMC11043346, DOI: 10.1038/s41467-024-47593-x.Peer-Reviewed Original ResearchConceptsF-actin architectureF-actinATP consumption rateF-actin bundlesIn vitro reconstitutionDynamic cellular processesHigher ATP consumptionActin cytoskeletonFilamentous actinMyosin motorsCellular processesATP hydrolysisPurified componentsAdenosine triphosphateForce generationConversion of chemical energyATP consumptionConsumption rateActinChemical energyMyosinNetwork contractionCytoskeletonEnergetic principlesHydrolysis
2023
Discovery of the first unconventional myosin: Acanthamoeba myosin-I
Pollard T, Korn E. Discovery of the first unconventional myosin: Acanthamoeba myosin-I. Frontiers In Physiology 2023, 14: 1324623. PMID: 38046947, PMCID: PMC10693453, DOI: 10.3389/fphys.2023.1324623.Peer-Reviewed Original ResearchUnconventional myosinActin filamentsMyosin heavy chain kinaseFirst unconventional myosinsEvolution of eukaryotesClass I MyosinHeavy chain kinaseNovel unconventional myosinPhylogenetic analysisSlime moldMembrane lipidsChain kinaseProteolytic fragmentsHeavy chainMuscle myosinMyosinCofactorEnzymeMg-ATPaseMg-ATPase activityEukaryotesFilamentsCrude enzymeKinaseActinCryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments
Huang X, Torre I, Chiappi M, Yin Z, Vydyanath A, Cao S, Raschdorf O, Beeby M, Quigley B, de Tombe P, Liu J, Morris E, Luther P. Cryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments. Journal Of Muscle Research And Cell Motility 2023, 44: 165-178. PMID: 37115473, PMCID: PMC10542292, DOI: 10.1007/s10974-023-09647-3.Peer-Reviewed Original ResearchConceptsMyBP-CMyosin-binding protein CCryo-electron tomographyStripes 4Binding protein CRod-shaped proteinN-terminal domainC-terminal regionCardiac MyBP-CActin filamentsAccessory proteinsCentral domainMyosin headsSubtomogram averagingActinMyosinTokuyasu cryosectionsProtein CCardiac muscleFilamentsProteinStripesC-zoneDependent fashionA-band
2019
Three-dimensional structure of the basketweave Z-band in midshipman fish sonic muscle
Burgoyne T, Heumann J, Morris E, Knupp C, Liu J, Reedy M, Taylor K, Wang K, Luther P. Three-dimensional structure of the basketweave Z-band in midshipman fish sonic muscle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 15534-15539. PMID: 31320587, PMCID: PMC6681754, DOI: 10.1073/pnas.1902235116.Peer-Reviewed Original ResearchConceptsActin filamentsA-actininStructure of actinArrays of actinActin filament axisPlainfin midshipman fishThree-dimensional structureMidshipman fishMyosin filamentsActinSonic musclesZ-bandsSarcomere overlapTransmit tensionFilamentsFilament axisSarcomereStriated MuscleElectron tomographyCrystallographic structureMyosinElectron micrographsSubtomogramProteinCross-linking
2018
High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing
Mentes A, Huehn A, Liu X, Zwolak A, Dominguez R, Shuman H, Ostap EM, Sindelar CV. High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proceedings Of The National Academy Of Sciences Of The United States Of America 2018, 115: 1292-1297. PMID: 29358376, PMCID: PMC5819444, DOI: 10.1073/pnas.1718316115.Peer-Reviewed Original ResearchConceptsN-terminal subdomainHigh-resolution cryo-EM structuresADP stateNear-atomic resolution structuresCryo-EM structureCryo-electron microscopyHigh-resolution structuresIsoform-dependent mannerFilamentous actinResolution structureStructural basisMyosin IBActin filamentsStructural diversityRelease pathwayADP releaseActinPointed endPotent stabilizerMyosin
2011
Actin Filament Dynamics in the Actomyosin VI Complex Is Regulated Allosterically by Calcium–Calmodulin Light Chain
Prochniewicz E, Pierre A, McCullough BR, Chin HF, Cao W, Saunders LP, Thomas DD, De La Cruz EM. Actin Filament Dynamics in the Actomyosin VI Complex Is Regulated Allosterically by Calcium–Calmodulin Light Chain. Journal Of Molecular Biology 2011, 413: 584-592. PMID: 21910998, PMCID: PMC3633491, DOI: 10.1016/j.jmb.2011.08.058.Peer-Reviewed Original ResearchConceptsActin filament dynamicsMyosin VIFilament dynamicsMicrosecond dynamicsCaM-dependent mannerCalmodulin light chainsLight chainActin bindingActin filamentsDependent CaMIQ domainCaM-dependent regulationFluorescence microscopyEnzymatic activityTransient phosphorescence anisotropyATP utilizationFinal anisotropyMicrosecond rotational dynamicsPhosphorescence anisotropyMyosinStructural dynamicsAnisotropy decaySuch modulationActinRegulation
2008
Myo2p, a class V myosin in budding yeast, associates with a large ribonucleic acid–protein complex that contains mRNAs and subunits of the RNA-processing body
Chang W, Zaarour RF, Reck-Peterson S, Rinn J, Singer RH, Snyder M, Novick P, Mooseker MS. Myo2p, a class V myosin in budding yeast, associates with a large ribonucleic acid–protein complex that contains mRNAs and subunits of the RNA-processing body. RNA 2008, 14: 491-502. PMID: 18218704, PMCID: PMC2248268, DOI: 10.1261/rna.665008.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdenosine TriphosphatasesBase SequenceDNA PrimersMacromolecular SubstancesMyosin Heavy ChainsMyosin Type VOligonucleotide Array Sequence AnalysisOrganellesPolyribosomesRibonucleoproteinsRNA Processing, Post-TranscriptionalRNA, FungalRNA, MessengerSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSecretory VesiclesVacuolesConceptsRNA processing bodiesClass V myosinsP-bodiesRelease of mRNAProcessing bodiesOrganelle traffickingSpindle orientationMotor mutantsMyo2-66Ribosomal subunitMyo2pProtein subunitsPartial colocalizationMicroarray analysisSubunitsSedimentation analysisYeastMRNAComplexesMyosinMutantsPolysomesTraffickingRNAColocalization
2007
Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast
Vavylonis D, Wu JQ, Hao S, O'Shaughnessy B, Pollard TD. Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast. Science 2007, 319: 97-100. PMID: 18079366, DOI: 10.1126/science.1151086.Peer-Reviewed Original ResearchConceptsContractile ringActin filamentsLive fission yeast cellsIndividual daughter cellsFission yeast cellsDynamic actin filamentsFission yeastMotor protein myosinCell equatorDaughter cellsYeast cellsAssembly mechanismProtein myosinFluorescence microscopyCytokinesisMyosinFilamentsTransient connectionsCellsYeastFungiMechanismMeshwork
2005
The Requirement for Mechanical Coupling Between Head and S2 Domains in Smooth Muscle Myosin ATPase Regulation and its Implications for Dimeric Motor Function
Tama F, Feig M, Liu J, Brooks C, Taylor K. The Requirement for Mechanical Coupling Between Head and S2 Domains in Smooth Muscle Myosin ATPase Regulation and its Implications for Dimeric Motor Function. Journal Of Molecular Biology 2005, 345: 837-854. PMID: 15588830, DOI: 10.1016/j.jmb.2004.10.084.Peer-Reviewed Original ResearchConceptsMyosin headsAlpha-helicesATP-dependent molecular motorSmooth muscle myosin IIMyosin II regulationCoiled-coil domainMuscle myosin IIInhibited stateMolecular motorsMyosin IIATPase regulationDimerization domainElastic network normal mode analysisAlpha-helixDomain movementsHomology modelingFunction of molecular motorsMyosinBiochemical dataConformational transitionRegulationNormal mode analysisExperimental structural dataStructural dataHeptad
2004
Relating biochemistry and function in the myosin superfamily
De La Cruz EM, Ostap EM. Relating biochemistry and function in the myosin superfamily. Current Opinion In Cell Biology 2004, 16: 61-67. PMID: 15037306, DOI: 10.1016/j.ceb.2003.11.011.Peer-Reviewed Original Research
2003
Refined Model of the 10S Conformation of Smooth Muscle Myosin by Cryo-electron Microscopy 3D Image Reconstruction
Liu J, Wendt T, Taylor D, Taylor K. Refined Model of the 10S Conformation of Smooth Muscle Myosin by Cryo-electron Microscopy 3D Image Reconstruction. Journal Of Molecular Biology 2003, 329: 963-972. PMID: 12798686, DOI: 10.1016/s0022-2836(03)00516-3.Peer-Reviewed Original ResearchConceptsRegulatory light chainSmooth muscle myosinEssential light chainMuscle myosinActivity of smooth muscle myosinMyosin headsAlpha-helical coiled-coilCryo-electronLight chainDephosphorylated regulatory light chainsMyosin motor domainCryo-electron microscopyConverter domainCoiled-coilHeavy meromyosinIntact myosinHomology modelingMotor domainMyosin subfragmentsMyosinATPase activityPositively charged lipid monolayerComplete regulationReal space refinementCharged lipid monolayer
2002
The leaden Gene Product Is Required with Rab27a to Recruit Myosin Va to Melanosomes in Melanocytes
Hume A, Collinson L, Hopkins C, Strom M, Barral D, Bossi G, Griffiths G, Seabra M. The leaden Gene Product Is Required with Rab27a to Recruit Myosin Va to Melanosomes in Melanocytes. Traffic 2002, 3: 193-202. PMID: 11886590, DOI: 10.1034/j.1600-0854.2002.030305.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCell NucleusCells, CulturedImmunoblottingMelanocytesMelanosomesMiceMice, Inbred BALB CMice, Inbred C3HMice, Inbred C57BLMicroscopy, ElectronMicroscopy, FluorescenceMutationMyosin Type VProtein BiosynthesisProteinsrab GTP-Binding Proteinsrab27 GTP-Binding ProteinsReverse Transcriptase Polymerase Chain ReactionSpleenSyndromeT-Lymphocytes, CytotoxicConceptsGene productsMyosin VaClasses of effector proteinsFunction of lysosome-related organellesLytic granulesPeripheral actin networkLysosome-related organellesLoss of function mutationsLocalized to melanosomesCytotoxic T lymphocytesTips of melanocyte dendritesGriscelli syndromeEffector proteinsActin networkPerinuclear clusteringT lymphocytesRab27aFunction mutationsImmunological synapseMyosinMelanocyte dendritesPromote recruitmentMelanosomesKill target cellsReduced levels
2001
Kinetic Mechanism and Regulation of Myosin VI*
De La Cruz E, Ostap E, Sweeney H. Kinetic Mechanism and Regulation of Myosin VI*. Journal Of Biological Chemistry 2001, 276: 32373-32381. PMID: 11423557, DOI: 10.1074/jbc.m104136200.Peer-Reviewed Original ResearchConceptsHeavy chain phosphorylationMyosin VIPhysiological nucleotide concentrationsADP releaseHigh duty ratio motorMolecular basisUnique adaptationsActin filamentsATP bindsATPase cycleNative dimerRate-limiting stepDetailed kinetic analysisChain phosphorylationRegulationNucleotide concentrationsDiffusional encounterMyosinLow affinityMutantsProcessivityKinetic analysisPhosphorylationActinBinds
1998
Unconventional Myosins in Cell Movement, Membrane Traffic, and Signal Transduction
Mermall V, Post P, Mooseker M. Unconventional Myosins in Cell Movement, Membrane Traffic, and Signal Transduction. Science 1998, 279: 527-533. PMID: 9438839, DOI: 10.1126/science.279.5350.527.Peer-Reviewed Original ResearchConceptsSignal transductionCell movementMembrane trafficMembrane traffickingDisease-causing mutationsCellular functionsMyosin genesImportance of myosinUnconventional myosinMyosin functionCellular levelMolecular motorsMyosin structureTransductionMyosinGenesTraffickingActinMutationsBiochemicalFunctionMembersTargetIdentification
1996
Mapping of Unconventional Myosins in Mouse and Human
Hasson T, Skowron J, Gilbert D, Avraham K, Perry W, Bement W, Anderson B, Sherr E, Chen Z, Greene L, Ward D, Corey D, Mooseker M, Copeland N, Jenkins N. Mapping of Unconventional Myosins in Mouse and Human. Genomics 1996, 36: 431-439. PMID: 8884266, DOI: 10.1006/geno.1996.0488.Peer-Reviewed Original Research
1995
Molecular motors, membrane movements and physiology: emerging roles for myosins
Hasson T, Mooseker M. Molecular motors, membrane movements and physiology: emerging roles for myosins. Current Opinion In Cell Biology 1995, 7: 587-594. PMID: 7495580, DOI: 10.1016/0955-0674(95)80017-4.Peer-Reviewed Original ResearchConceptsMembrane protein functionMolecular motorsProtein functionSignal transductionNovel myosinOrganelle transportATP hydrolysisActin filamentsCell locomotionLarge familyMembrane movementUbiquitous associationMechanical forcesActinMyosinMembrane phenomenaTransductionMechanoenzymesMechanoregulationPhysiologyRolePhagocytosisMembraneFilamentsFamily
1989
Location of the head-tail junction of myosin.
Rimm DL, Sinard JH, Pollard TD. Location of the head-tail junction of myosin. Journal Of Cell Biology 1989, 108: 1783-1789. PMID: 2715178, PMCID: PMC2115540, DOI: 10.1083/jcb.108.5.1783.Peer-Reviewed Original ResearchConceptsMyosin IIHeptad repeatAcanthamoeba myosin IIHead-tail junctionCoiled-coil structureHydrophobic amino acidsNative myosin IIIdentical polypeptidesNH2 terminusMyosin-II tailNonmuscle myosinProteolytic separationLines of evidenceShort tailAmino acidsPosition 847RepeatsMyosinResiduesTailMyosin moleculesHeptadTerminusMonoclonal antibodiesPolypeptide
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply