2025
High affinity CD16 polymorphism associated with reduced risk of severe COVID-19
Qualls A, Tsao T, Lui I, Lim S, Su Y, Chen E, Duchen D, Maecker H, Kim-Schulze S, Montgomery R, Krammer F, Langelier C, Levy O, Baden L, Melamed E, Ehrlich L, McComsey G, Sekaly R, Cairns C, Haddad E, Shaw A, Hafler D, Corry D, Kheradmand F, Atkinson M, Brakenridge S, Higuita N, Metcalf J, Hough C, Messer W, Pulendran B, Nadeau K, Davis M, Fernandez-Sesma A, Simon V, Kraft M, Bime C, Calfee C, Erle D, Schaenmann J, Ozonoff A, Peters B, Kleinstein S, Augustine A, Diray-Arce J, Becker P, Rouphael N, Network I, Goldman J, Calabrese D, Heath J, Wells J, Reed E, Lanier L, Pickering H, Aguilar O. High affinity CD16 polymorphism associated with reduced risk of severe COVID-19. JCI Insight 2025 PMID: 40402577, DOI: 10.1172/jci.insight.191314.Peer-Reviewed Original ResearchAntibody-dependent cellular cytotoxicitySevere COVID-19Anti-SARS-CoV-2 IgG titersNK cell-mediated immune responsesNK cell-mediated antibody-dependent cellular cytotoxicityHost-directed therapeutic strategiesSevere disease trajectoryCell-mediated immune responsesHospitalized COVID-19 patientsLevels of inflammatory mediatorsNatural killer cellsSevere respiratory complicationsImmunopathogenesis of COVID-19Activating Fc receptorsRisk of ICU admissionRisk of severe COVID-19SARS-CoV-2 infectionCOVID-19 patientsCOVID-19 cohortIn vitro reporter systemKiller cellsRespiratory complicationsCellular cytotoxicityViral loadImmunophenotypic assessment
2023
Leishmania major-derived lipophosphoglycan influences the host’s early immune response by inducing platelet activation and DKK1 production via TLR1/2
Ihedioha O, Sivakoses A, Beverley S, McMahon-Pratt D, Bothwell A. Leishmania major-derived lipophosphoglycan influences the host’s early immune response by inducing platelet activation and DKK1 production via TLR1/2. Frontiers In Immunology 2023, 14: 1257046. PMID: 37885890, PMCID: PMC10598878, DOI: 10.3389/fimmu.2023.1257046.Peer-Reviewed Original ResearchConceptsLeukocyte-platelet aggregatesEarly immune responseImmune responsePlatelet activationHost's early immune responseCell-mediated immune responsesTh2 cell polarizationAdaptive immune responsesPro-inflammatory responsePattern recognition receptorsKey virulence factorsRecognition receptorsInfectious diseasesPathogenic moleculesEndothelial cellsWnt antagonistsInfection siteVirulence factorsTLR1/2PlateletsDickkopf1Cell typesLipophosphoglycanActivationResponseDevelopment of an mRNA-lipid nanoparticle vaccine against Lyme disease
Pine M, Arora G, Hart T, Bettini E, Gaudette B, Muramatsu H, Tombácz I, Kambayashi T, Tam Y, Brisson D, Allman D, Locci M, Weissman D, Fikrig E, Pardi N. Development of an mRNA-lipid nanoparticle vaccine against Lyme disease. Molecular Therapy 2023, 31: 2702-2714. PMID: 37533256, PMCID: PMC10492027, DOI: 10.1016/j.ymthe.2023.07.022.Peer-Reviewed Original ResearchConceptsLyme diseaseImmune responseCell-mediated immune responsesLyme disease vaccinePotent immune responsesProtein subunit vaccinesSARS-CoV-2Surface protein AVector-borne infectious diseasesMRNA-LNP vaccineOuter surface protein ASingle immunizationProtective efficacyMRNA vaccinesClinical vaccinesDisease vaccineNanoparticle vaccineSubunit vaccineVaccine developmentVaccineBacterial infectionsMRNA-LNPInfectious diseasesDiseaseMRNA platform
2022
Drug-Induced Acute Kidney Injury
Perazella MA, Rosner MH. Drug-Induced Acute Kidney Injury. Clinical Journal Of The American Society Of Nephrology 2022, 17: 1220-1233. PMID: 35273009, PMCID: PMC9435983, DOI: 10.2215/cjn.11290821.Peer-Reviewed Original ResearchConceptsKidney injuryTubular injuryDrug-induced acute kidney injuryT cell-mediated immune responsesDrug-related kidney injuryCell-mediated immune responsesAcute interstitial nephritisDirect tubular injuryTreatment of AKIAcute kidney injuryAcute tubular injuryIntensive care unitInduction of inflammationAKI riskIntratubular obstructionTubulointerstitial injuryInterstitial nephritisCare unitInflammation leadInjury resultsCommon causeImmune responseHospital wardsProximal tubulesAKI
2021
Mitochondrial fission in allograft endothelial cells: A novel actionable target
Mullan CW, Pober JS. Mitochondrial fission in allograft endothelial cells: A novel actionable target. American Journal Of Transplantation 2021, 22: 337-338. PMID: 34865296, DOI: 10.1111/ajt.16911.Commentaries, Editorials and Letters
2018
Small Interfering RNA-Mediated Control of Virus Replication in the CNS Is Therapeutic and Enables Natural Immunity to West Nile Virus
Beloor J, Maes N, Ullah I, Uchil P, Jackson A, Fikrig E, Lee SK, Kumar P. Small Interfering RNA-Mediated Control of Virus Replication in the CNS Is Therapeutic and Enables Natural Immunity to West Nile Virus. Cell Host & Microbe 2018, 23: 549-556.e3. PMID: 29606496, PMCID: PMC6074029, DOI: 10.1016/j.chom.2018.03.001.Peer-Reviewed Original ResearchConceptsWest Nile virusWNV infectionCell-mediated immune responsesLate-stage therapySubsequent WNV infectionWNV-infected miceLong-term immunityNile virusWNV E proteinViral burdenIntranasal routeVirus clearanceVirus infectionImmune responseMice succumbPeripheral tissuesNatural immunitySurvival rateDisease resultsDay 9Virus replicationInfectionImmunityCNSVirus
2013
Micronutrient supplementation and T cell-mediated immune responses in patients with tuberculosis in Tanzania
KAWAI K, MEYDANI SN, URASSA W, WU D, MUGUSI FM, SAATHOFF E, BOSCH RJ, VILLAMOR E, SPIEGELMAN D, FAWZI WW. Micronutrient supplementation and T cell-mediated immune responses in patients with tuberculosis in Tanzania. Epidemiology And Infection 2013, 142: 1505-1509. PMID: 24093552, PMCID: PMC5639693, DOI: 10.1017/s0950268813002495.Peer-Reviewed Original ResearchConceptsCell-mediated immune responsesTB patientsMicronutrient supplementationMicronutrient supplementsImmune responseProliferative responseT cell-mediated immune responsesHIV-negative TB patientsHIV-positive TB patientsLymphocyte proliferative responsesLymphocyte proliferation responseHigher proliferative responsesT cell mitogensPlacebo groupPulmonary TBTB treatmentDaily doseEligible participantsNutritional interventionTuberculosis treatmentTime of initiationClinical relevanceMicronutrient groupProliferation responsePatients
2012
Quantitative imaging of lineage-specific Toll-like receptor-mediated signaling in monocytes and dendritic cells from small samples of human blood.
Qian F, Montgomery RR. Quantitative imaging of lineage-specific Toll-like receptor-mediated signaling in monocytes and dendritic cells from small samples of human blood. Journal Of Visualized Experiments 2012 PMID: 22525943, PMCID: PMC3466655, DOI: 10.3791/3741.Peer-Reviewed Original ResearchConceptsToll-like receptorsDendritic cellsImmune responseToll-like receptor-mediated signalingCell-mediated immune responsesCertain Toll-like receptorsAntigen-presenting cellsPeripheral blood monocytesHealthy human donorsNF-κB pathwayInnate immune systemReceptor-mediated signalingQuantitative flow cytometryTLR levelsWest Nile virusPatient susceptibilityUnderstanding of immunosenescenceImmune responsivenessElderly donorsLarge cohortOlder donorsAdaptive immunityBlood monocytesNF-κBTherapeutic interventions
2010
TLR9-Targeted Biodegradable Nanoparticles as Immunization Vectors Protect against West Nile Encephalitis
Demento SL, Bonafé N, Cui W, Kaech SM, Caplan MJ, Fikrig E, Ledizet M, Fahmy TM. TLR9-Targeted Biodegradable Nanoparticles as Immunization Vectors Protect against West Nile Encephalitis. The Journal Of Immunology 2010, 185: 2989-2997. PMID: 20660705, PMCID: PMC3753007, DOI: 10.4049/jimmunol.1000768.Peer-Reviewed Original ResearchConceptsBiodegradable nanoparticlesUnmodified nanoparticlesImmune responseNanoparticlesCell-mediated immune responsesRobust humoral responseTh1 immune responseEffector T cellsAg-specific lymphocytesTh2-biased responsesAdjuvant aluminum hydroxideWest Nile encephalitisVirus encephalitisWest Nile virusAgHumoral responseCpG oligodeoxynucleotideT cellsMouse modelLive virusInfectious agentsProtein AgVaccine developmentWN virusNile virus
2009
Self-complementary AAV Virus (scAAV) Safe and Long-term Gene Transfer in the Trabecular Meshwork of Living Rats and Monkeys
Buie L, Rasmussen C, Porterfield E, Ramgolam V, Choi V, Markovic-Plese S, Samulski R, Kaufman P, Borrás T. Self-complementary AAV Virus (scAAV) Safe and Long-term Gene Transfer in the Trabecular Meshwork of Living Rats and Monkeys. Investigative Ophthalmology & Visual Science 2009, 51: 236-248. PMID: 19684004, PMCID: PMC2869048, DOI: 10.1167/iovs.09-3847.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDependovirusEnzyme-Linked Immunosorbent AssayFemaleFluorescein AngiographyFluorescent Antibody Technique, IndirectGene ExpressionGene Transfer TechniquesGenetic VectorsGonioscopyGreen Fluorescent ProteinsIntraocular PressureMacaca fascicularisMaleOligonucleotide Array Sequence AnalysisRatsRats, Inbred BNRats, WistarReverse Transcriptase Polymerase Chain ReactionTonometry, OcularTrabecular MeshworkTransduction, GeneticConceptsHuman trabecular meshwork cellsTrabecular meshworkIntraocular pressureImmune responseCell-mediated immune responsesAnterior segment tissuesLow immune responseGene therapyTrabecular meshwork cellsSingle doseSingle dosesAAV vectorsCynomolgus monkeysFaster onsetGoldmann tonometerTransgene expressionLong-term gene transferRatsSegment tissuesProliferation assaysAdverse effectsMeshwork cellsSafe deliveryLiving ratsMonkeysHuman Papillomavirus Type 16 (HPV-16) Virus-Like Particle L1-Specific CD8+ Cytotoxic T Lymphocytes (CTLs) Are Equally Effective as E7-Specific CD8+ CTLs in Killing Autologous HPV-16-Positive Tumor Cells in Cervical Cancer Patients: Implications for L1 Dendritic Cell-Based Therapeutic Vaccines
Bellone S, El-Sahwi K, Cocco E, Casagrande F, Cargnelutti M, Palmieri M, Bignotti E, Romani C, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD. Human Papillomavirus Type 16 (HPV-16) Virus-Like Particle L1-Specific CD8+ Cytotoxic T Lymphocytes (CTLs) Are Equally Effective as E7-Specific CD8+ CTLs in Killing Autologous HPV-16-Positive Tumor Cells in Cervical Cancer Patients: Implications for L1 Dendritic Cell-Based Therapeutic Vaccines. Journal Of Virology 2009, 83: 6779-6789. PMID: 19386711, PMCID: PMC2698533, DOI: 10.1128/jvi.02443-08.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedCancer VaccinesCapsid ProteinsCell Line, TumorDendritic CellsFemaleGene Expression ProfilingHuman papillomavirus 16HumansMiddle AgedOncogene Proteins, ViralPapillomavirus E7 ProteinsPapillomavirus InfectionsRepressor ProteinsRNA, ViralT-Lymphocytes, CytotoxicUterine Cervical NeoplasmsYoung AdultConceptsCervical cancer patientsCytotoxic T lymphocytesAutologous tumor cellsCancer patientsDendritic cellsT lymphocytesL1 VLPsCervical cancerTumor cellsE7 RNADendritic cell-based therapeutic vaccineE7-specific cytotoxic T lymphocytesHPV-16 positive cervical cancerCell-mediated immune responsesExpression levelsAutologous dendritic cellsHPV-16 VLPPromising prophylactic vaccineE7-specific CD8Human papillomavirus infectionT lymphocyte responsesStrong cytolytic activityTreatment of patientsPeripheral blood lymphocytesPrimary cervical tumors
2008
Persistent Intrathecal Immune Activation in HIV-1-Infected Individuals on Antiretroviral Therapy
Yilmaz A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslén M. Persistent Intrathecal Immune Activation in HIV-1-Infected Individuals on Antiretroviral Therapy. JAIDS Journal Of Acquired Immune Deficiency Syndromes 2008, 47: 168-173. PMID: 17971711, PMCID: PMC2628632, DOI: 10.1097/qai.0b013e31815ace97.Peer-Reviewed Original ResearchConceptsCSF neopterin levelsHIV-1-infected patientsHIV-1-infected individualsCSF neopterin concentrationsCSF viral loadIntrathecal immune activationAntiretroviral therapyHIV-1 RNACopies/mLNeopterin levelsViral loadNeopterin concentrationsImmune activationCSF HIV-1 RNA loadMost HIV-1-infected individualsPlasma HIV-1 RNA levelsCerebrospinal fluid (CSF) neopterin levelsQuantitative HIV-1 RNAHIV-1 RNA levelsHIV-1 RNA loadCell-mediated immune responsesHIV-1 RNA quantificationHIV-1 concentrationsStable antiretroviral therapySuppressive antiretroviral therapy
2007
Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus
Vilarinho S, Ogasawara K, Nishimura S, Lanier LL, Baron JL. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 18187-18192. PMID: 17991774, PMCID: PMC2084318, DOI: 10.1073/pnas.0708968104.Peer-Reviewed Original ResearchConceptsHepatitis B virusHepatitis B viral infectionB virusImmune responseAcute hepatitisNKT cellsLiver injuryViral infectionCell-mediated immune responsesBlockade of NKG2DPrimary HBV infectionAcute liver injuryAcute immune responseTransgenic mouse modelPotential therapeutic targetNKG2D-ligand interactionChronic hepatitisHBV infectionAlpha-GalCerNatural killerHepatic pathologyViral antigensMouse modelTherapeutic targetHepatitis
2005
Cross-Comparison of Patch Test and Lymphocyte Proliferation Responses in Patients With a History of Acute Generalized Exanthematous Pustulosis
Girardi M, Duncan KO, Tigelaar RE, Imaeda S, Watsky KL, McNiff JM. Cross-Comparison of Patch Test and Lymphocyte Proliferation Responses in Patients With a History of Acute Generalized Exanthematous Pustulosis. American Journal Of Dermatopathology 2005, 27: 343-346. PMID: 16121058, DOI: 10.1097/01.dad.0000160982.75176.6c.Peer-Reviewed Original ResearchConceptsAcute generalized exanthematous pustulosisPatch test resultsPositive patch test resultsGeneralized exanthematous pustulosisLymphocyte proliferative responsesProliferative responseExanthematous pustulosisPeripheral T-cell proliferative responsesT cell-mediated immune responsesDrug-specific T cellsVitro lymphocyte proliferative responseCalcium channel blocker diltiazemCell-mediated immune responsesDelayed-type hypersensitivity reactionT cell proliferative responsesAdverse cutaneous reactionsLymphocyte proliferation responseChannel blocker diltiazemCell proliferative responsesPatch test sitesNeutrophilic pustulesClinical responsePerivascular lymphocytesCutaneous reactionsHypersensitivity reactionsTherapeutic vaccines for cervical cancer: dendritic cell-based immunotherapy.
Santin AD, Bellone S, Roman JJ, Burnett A, Cannon MJ, Pecorelli S. Therapeutic vaccines for cervical cancer: dendritic cell-based immunotherapy. Current Pharmaceutical Design 2005, 11: 3485-500. PMID: 16248803, DOI: 10.2174/138161205774414565.Peer-Reviewed Original ResearchConceptsCervical cancer patientsT cell responsesDendritic cellsCervical cancerCancer patientsE7 oncoproteinsLate-stage cervical cancer patientsTumor-specific T-cell responsesImmune systemCell responsesPowerful antigen-presenting cellsDendritic cell-based immunotherapyPrimary T cell responsesCell-mediated immune responsesAutologous dendritic cellsTherapeutic HPV vaccinesTreatment-induced immunosuppressionPrimary radiation therapyHuman papillomavirus infectionAdvanced cervical cancerCell-based immunotherapyTumor-specific target antigensAntigen-presenting cellsImportant risk factorGold standard treatmentThe Integration of Conventional and Unconventional T Cells that Characterizes Cell‐Mediated Responses
Pennington D, Vermijlen D, Wise E, Clarke S, Tigelaar R, Hayday A. The Integration of Conventional and Unconventional T Cells that Characterizes Cell‐Mediated Responses. Advances In Immunology 2005, 87: 27-59. PMID: 16102571, DOI: 10.1016/s0065-2776(05)87002-6.Peer-Reviewed Original ResearchConceptsUnconventional T cellsGene expression analysisConventional T cellsExtensive gene expression analysisT cellsExpression analysisRegulatory functionsCell-mediated immune responsesCell-mediated responsesT cell activityAntigen-specific responsesCellsInflammatory diseasesImmune responseImmunopathology
2003
Screening for T cell-eliciting proteins of Japanese encephalitis virus in a healthy JE-endemic human cohort using recombinant baculovirus-infected insect cell preparations
Kumar P, Uchil PD, Sulochana P, Nirmala G, Chandrashekar R, Haridattatreya M, Satchidanandam V. Screening for T cell-eliciting proteins of Japanese encephalitis virus in a healthy JE-endemic human cohort using recombinant baculovirus-infected insect cell preparations. Archives Of Virology 2003, 148: 1569-1591. PMID: 12898332, DOI: 10.1007/s00705-003-0118-5.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, ViralBaculoviridaeCells, CulturedCohort StudiesEncephalitis Virus, JapaneseEncephalitis, JapaneseEndemic DiseasesFemaleHumansImmunologic MemoryLymphocyte ActivationMaleRecombinant ProteinsRNA HelicasesSerine EndopeptidasesSpodopteraT-LymphocytesViral Nonstructural ProteinsViral ProteinsConceptsJapanese encephalitis virusCell-mediated immune responsesT cell responsesImmune responseJEV infectionT cellsCell responsesEncephalitis virusAdaptive T cell responsesHuman cohortsTh1 immune responseMemory T cellsCell preparationsImmune controlHealthy individualsCohortWhole cell preparationsViral proteinsInfectionNS3 proteinImportant targetVirusCritical determinantNS1NS5 protein
1999
Role of the C-C chemokine, TCA3, in the protective anticryptococcal cell-mediated immune response.
Doyle H, Murphy J. Role of the C-C chemokine, TCA3, in the protective anticryptococcal cell-mediated immune response. The Journal Of Immunology 1999, 162: 4824-33. PMID: 10202026, DOI: 10.4049/jimmunol.162.8.4824.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, FungalAntigens, FungalCell MovementChemokine CCL1Chemokine CCL3Chemokine CCL4Chemokines, CCCryptococcosisCryptococcus neoformansCytokinesFemaleGelatin Sponge, AbsorbableHypersensitivity, DelayedImmunity, CellularKineticsLeukocytesMacrophage Inflammatory ProteinsMiceMice, Inbred CBANeutrophilsReceptors, CCR8Recombinant ProteinsConceptsDelayed-type hypersensitivityMIP-1alphaC chemokinesAnticryptococcal cell-mediated immune responseCell-mediated immune responsesCell-mediated immune reactionsMacrophage inflammatory protein-1alphaMonocyte chemotactic protein-1DTH reaction sitesNumber of neutrophilsActivated T lymphocytesGelatin sponge modelCMI responsesNaive miceDTH reactionInfected miceCMI reactionsT cellsT lymphocytesImmune responseImmune reactionsCellular infiltrationLymphocytesChemokinesNeutrophils
1997
MIP-1α contributes to the anticryptococcal delayed-type hypersensitivity reaction and protection against Cryptococcus neoformans
Doyle H, Murphy J. MIP-1α contributes to the anticryptococcal delayed-type hypersensitivity reaction and protection against Cryptococcus neoformans. Journal Of Leukocyte Biology 1997, 61: 147-155. PMID: 9021919, DOI: 10.1002/jlb.61.2.147.Peer-Reviewed Original ResearchConceptsMIP-1 alphaMIP-1 alpha levelsDelayed-type hypersensitivity reactionImmunized miceHypersensitivity reactionsC. neoformansCell-mediated immune responsesInflammatory protein-1 alphaCryptococcus neoformansAlpha levelsDTH reaction sitesInflux of neutrophilsNumber of neutrophilsProtein-1 alphaClearance of microorganismsGelatin sponge modelCMI responsesCryptococcal antigenNeutrophil influxNaive miceDTH reactionLeukocyte infiltrationMIP-1αChemotactic cytokinesImmune response
1996
Delayed-type hypersensitivity in mast cell-deficient mice: dependence on platelets for expression of contact sensitivity.
Geba GP, Ptak W, Anderson GM, Paliwal V, Ratzlaff RE, Levin J, Askenase PW. Delayed-type hypersensitivity in mast cell-deficient mice: dependence on platelets for expression of contact sensitivity. The Journal Of Immunology 1996, 157: 557-65. PMID: 8752902, DOI: 10.4049/jimmunol.157.2.557.Peer-Reviewed Original ResearchConceptsMast cell-deficient miceCell-deficient miceDelayed-type hypersensitivityContact sensitivityPlatelet depletionMast cellsCS responsesT cell-mediated immune responsesMast cell-deficient strainsDelayed-type hypersensitivity responseT cell-mediated responsesCell-mediated immune responsesTissue levelsCutaneous sensitivity responsesVasoactive amine serotoninCell-mediated responsesLocal mast cellsMast cell numbersNormal mast cell numbersHypersensitivity responseCutaneous responseImmunologic evidenceBeige miceImmune responseAmine serotonin
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply