2025
Toll-like receptors in B cells and obesity
Wang P, Hou C, Wong F, Wen L. Toll-like receptors in B cells and obesity. Trends In Molecular Medicine 2025 PMID: 40527636, DOI: 10.1016/j.molmed.2025.05.005.Peer-Reviewed Original ResearchToll-like receptorsPathogen-associated molecular patternsB cellsDendritic cellsFunction of Toll-like receptorsActivation of dendritic cellsActivation of TLR signalingExcessive adipose tissue accumulationSignaling mechanisms of Toll-like receptorsT cell differentiationAdipose tissue accumulationContext of obesityMechanisms of Toll-like receptorsChronic inflammationInflammatory activityAdaptive immunityImmune responseMetabolic dysregulationTLR signalingImmune functionObesityTissue accumulationMetabolic diseasesMolecular patternsSignaling mechanismsBlocking Nitrosylation Induces Immunogenic Cell Death by Sensitizing NRAS-Mutant Melanoma to MEK Inhibitors
Srivastava J, Yadav V, Jimenez R, Phadatare P, Inamdar N, Young M, Bacchiocchi A, Halaban R, Fang B, de Mingo Pulido A, Tsai K, Smalley K, Koomen J, Rodriguez P, Premi S. Blocking Nitrosylation Induces Immunogenic Cell Death by Sensitizing NRAS-Mutant Melanoma to MEK Inhibitors. Cancer Research 2025, 85: 2268-2287. PMID: 40287947, PMCID: PMC12167936, DOI: 10.1158/0008-5472.can-24-0693.Peer-Reviewed Original ResearchConceptsInduce immunogenic cell deathNRAS-mutant melanomaDamage-associated molecular patternsImmunogenic cell deathMEK inhibitorsDendritic cellsRepertoire of CD8+ T cellsCocultures of dendritic cellsCD8+ T cellsCell deathActivating NRAS mutationsAntimelanoma immune responsesImmunocompetent mouse modelInnovative treatment strategiesMEK-ERK signalingAntitumor immunityNRAS mutationsMelanoma subtypesERK MAPK pathwayTargeted therapyTumor microenvironmentT cellsT lymphocytesMelanoma growthTherapeutic resistanceSpatial single-cell analysis identifies placental villi structuraland immune remodeling across gestation
Velagala S, Phan L, Eke C, Fernandes A, Rice T, Olaloye O, Konnikova L. Spatial single-cell analysis identifies placental villi structuraland immune remodeling across gestation. Mucosal Immunology 2025 PMID: 40288579, DOI: 10.1016/j.mucimm.2025.04.005.Peer-Reviewed Original ResearchVascular smooth muscle cellsPlacental villiSmooth muscle cellsMid-gestationMyeloid-derived suppressor cellsMuscle cellsMechanisms of preterm birthMaternal immune systemInnate lymphoid cellsRare T cellsFull-term samplesTolerogenic statePreterm birthSuppressor cellsImmune remodelingPregnancy complicationsDendritic cellsActivation markersT cellsImaging Mass CytometryLymphoid cellsImmune populationsMacrophage subtypesSyncytial trophoblastImmune systemHuman Type 1 Conventional Dendritic Cells Contribute to Skin Transplant Rejection
Borges T, Lee C, Mucciarone K, Lima K, Lape I, Lima-Filho M, Ayoama B, Kollar B, Gassen R, Bonorino C, Talbot S, Pomahac B, Lian C, Murphy G, Riella L. Human Type 1 Conventional Dendritic Cells Contribute to Skin Transplant Rejection. American Journal Of Transplantation 2025 PMID: 40286910, DOI: 10.1016/j.ajt.2025.04.016.Peer-Reviewed Original ResearchType 1 conventional dendritic cellsHuman skin allograftsDendritic cellsSkin allograftsT cellsDecreased HLA-DR expressionIncreased regulatory T cellsMurine skin transplantationSkin transplant rejectionHLA-DR expressionRegulatory T cellsAllogeneic T cellsHuman skin graftsHumanized transplantation modelUpper extremity transplant recipientsInduce immune modulationImmunogenic tissueTransplant recipientsTransplantation modelTransplant rejectionCDC1 subsetImmune modulationCDC1sSkin transplantationSkin graftsModeling bone marrow microenvironment and hematopoietic dysregulation in Gaucher disease through VavCre mediated Gba deletion
Belinsky G, Ruan J, Fattahi N, Mehta S, Boddupalli C, Mistry P, Nair S. Modeling bone marrow microenvironment and hematopoietic dysregulation in Gaucher disease through VavCre mediated Gba deletion. Human Molecular Genetics 2025, 34: 952-966. PMID: 40197748, PMCID: PMC12085781, DOI: 10.1093/hmg/ddaf045.Peer-Reviewed Original ResearchGD miceImmune dysregulationGaucher diseaseExpansion of monocytesImmune cell deconvolutionKnockout modelsBone marrow microenvironmentGlucocerebrosidase activityC57BL/6 J backgroundDeficient glucocerebrosidase activityGaucher cell infiltrationInfluence disease severityGD biomarkersGD pathologyGD pathophysiologyLysosomal storage disorderImmune landscapeDendritic cellsHematopoietic stemMarrow microenvironmentAccumulation of glucosylceramideVav-CreBone marrowCell infiltrationHematopoietic cellsCas12a-knock-in mice for multiplexed genome editing, disease modelling and immune-cell engineering
Tang K, Zhou L, Tian X, Fang S, Vandenbulcke E, Du A, Shen J, Cao H, Zhou J, Chen K, Kim H, Luo Z, Xin S, Lin S, Park D, Yang L, Zhang Y, Suzuki K, Majety M, Ling X, Lam S, Chow R, Ren P, Tao B, Li K, Codina A, Dai X, Shang X, Bai S, Nottoli T, Levchenko A, Booth C, Liu C, Fan R, Dong M, Zhou X, Chen S. Cas12a-knock-in mice for multiplexed genome editing, disease modelling and immune-cell engineering. Nature Biomedical Engineering 2025, 1-19. PMID: 40114032, DOI: 10.1038/s41551-025-01371-2.Peer-Reviewed Original ResearchKnock-In MiceBone marrow-derived dendritic cellsCD8+ T cellsNon-viral delivery vehiclesAdeno-associated virusDisease modelsCD4+Dendritic cellsC57BL/6 backgroundT cellsConstitutive expressionB cellsLipid nanoparticlesEx vivoGenome editingMiceMultiplex genome engineeringROSA26 locusGene interaction networksMultiplex genome editingLiver tissueTargeted genome editingDiseaseDelivery vehiclesCRISPR RNADendritic cell phagosomes recruit GRASP55 for export of antigen-loaded MHC molecules
Cebrian I, Dinamarca S, Rodríguez M, Priego E, Brouwers N, Barends M, Brunnberg J, Tampé R, Blanchard N, Sancho D, Malhotra V. Dendritic cell phagosomes recruit GRASP55 for export of antigen-loaded MHC molecules. Cell Reports 2025, 44: 115333. PMID: 39955774, PMCID: PMC11861518, DOI: 10.1016/j.celrep.2025.115333.Peer-Reviewed Original ResearchConceptsExogenous antigen presentationDendritic cellsAntigen presentationMHC moleculesBone marrow-derived dendritic cellsBone marrow-derived DCCD4<sup>+</sup> T cellsMHC-IActivated CD8<sup>+</sup>MHC class IIDendritic cell phagosomesMHC II moleculesCD8<sup>+</sup>Peptide-loaded MHC moleculesT cellsExogenous antigensMHC-IIClass IIAntigenEndocytic systemGRASP55Cell surfaceIntracellular transportPlasma membranePresentationCholesterol mobilization regulates dendritic cell maturation and the immunogenic response to cancer
Belabed M, Park M, Blouin C, Balan S, Moon C, Freed G, Quijada-Álamo M, Peros A, Mattiuz R, Reid A, Yatim N, Boumelha J, Azimi C, LaMarche N, Troncoso L, Amabile A, Le Berichel J, Chen S, Wilk C, Brown B, Radford K, Ghosh S, Rothlin C, Yvan-Charvet L, Marron T, Puleston D, Wagenblast E, Bhardwaj N, Lamaze C, Merad M. Cholesterol mobilization regulates dendritic cell maturation and the immunogenic response to cancer. Nature Immunology 2025, 26: 188-199. PMID: 39838105, DOI: 10.1038/s41590-024-02065-8.Peer-Reviewed Original ResearchConventional dendritic cellsNiemann-Pick disease type C1Maturation of conventional dendritic cellsExpression of maturation markersCholesterol mobilizationAnti-tumor immunityReceptor tyrosine kinase AXLDendritic cell maturationResponse to cancerTyrosine kinase AXLDendritic cellsImmune receptor signalingMaturation markersAuto-immunityCell maturationReceptor signalingImmunogenic responseTherapeutic targetCholesterol transportLipid nanodomainsSubcellular mechanismsCholesterolType C1CancerCell surface
2024
Dysregulation in keratinocytes drives systemic lupus erythematosus onset
Tian J, Shi L, Zhang D, Yao X, Zhao M, Kumari S, Lu J, Yu D, Lu Q. Dysregulation in keratinocytes drives systemic lupus erythematosus onset. Cellular & Molecular Immunology 2024, 22: 83-96. PMID: 39627610, PMCID: PMC11686216, DOI: 10.1038/s41423-024-01240-z.Peer-Reviewed Original ResearchSystemic lupus erythematosusDendritic cellsT cellsActivated CD4+ T cellsDisease onsetSystemic lupus erythematosus onsetCD4+ T cellsHallmarks of systemic lupus erythematosusHuman systemic lupus erythematosusSkin lesions of patientsEtiology of systemic lupus erythematosusEffector T cellsLocal draining lymph nodesActivated dendritic cellsDraining Lymph NodesMultiorgan autoimmune disorderSystemic autoimmune diseaseLesions of patientsPeroxisome proliferator-activated receptor gammaImmune cell dysregulationProliferator-activated receptor gammaInterferon regulatory factor 3Type I interferonII-dependent mannerRegulatory factor 3CD74 promotes the formation of an immunosuppressive tumor microenvironment in triple-negative breast cancer in mice by inducing the expansion of tolerogenic dendritic cells and regulatory B cells
Pellegrino B, David K, Rabani S, Lampert B, Tran T, Doherty E, Piecychna M, Meza-Romero R, Leng L, Hershkovitz D, Vandenbark A, Bucala R, Becker-Herman S, Shachar I. CD74 promotes the formation of an immunosuppressive tumor microenvironment in triple-negative breast cancer in mice by inducing the expansion of tolerogenic dendritic cells and regulatory B cells. PLOS Biology 2024, 22: e3002905. PMID: 39576827, PMCID: PMC11623796, DOI: 10.1371/journal.pbio.3002905.Peer-Reviewed Original ResearchTriple-negative breast cancerMacrophage migration inhibitory factorImmunosuppressive tumor microenvironmentTolerogenic dendritic cellsRegulatory B cellsChronic lymphocytic leukemiaTumor microenvironmentDendritic cellsImmune cellsB cellsBreast cancerInfiltration of immune cellsAggressive breast cancer subtypeMassive infiltration of immune cellsLevels of CD74Cytokine macrophage migration inhibitory factorBreast cancer subtypesMigration inhibitory factorBinding to CD74Naive BTol-DCsLymphocytic leukemiaTumor environmentMassive infiltrationCancer subtypesNeoadjuvant vidutolimod and nivolumab in high-risk resectable melanoma: A prospective phase II trial
Davar D, Morrison R, Dzutsev A, Karunamurthy A, Chauvin J, Amatore F, Deutsch J, Das Neves R, Rodrigues R, McCulloch J, Wang H, Hartman D, Badger J, Fernandes M, Bai Y, Sun J, Cole A, Aggarwal P, Fang J, Deitrick C, Bao R, Duvvuri U, Sridharan S, Kim S, A Choudry H, Holtzman M, Pingpank J, O'Toole J, DeBlasio R, Jin Y, Ding Q, Gao W, Groetsch C, Pagliano O, Rose A, Urban C, Singh J, Divarkar P, Mauro D, Bobilev D, Wooldridge J, Krieg A, Fury M, Whiteaker J, Zhao L, Paulovich A, Najjar Y, Luke J, Kirkwood J, Taube J, Park H, Trinchieri G, Zarour H. Neoadjuvant vidutolimod and nivolumab in high-risk resectable melanoma: A prospective phase II trial. Cancer Cell 2024, 42: 1898-1918.e12. PMID: 39486411, PMCID: PMC11560503, DOI: 10.1016/j.ccell.2024.10.007.Peer-Reviewed Original ResearchConceptsPlasmacytoid dendritic cellsHigh-risk resected melanomaResected melanomaCD8<sup>+</sup> tumor-infiltrating lymphocytesAnti-PD-1 nivolumabAnti-tumor immune responseProspective phase II trialAnti-PD-1Associated with gene signaturesTumor-infiltrating lymphocytesPhase II trialResponse to therapySingle-arm studyAssociated with necrosisGut microbiotaClinical responseII trialPrimary endpointDendritic cellsTLR9 agonistsTumor microenvironmentT cellsMyeloid cellsPathological responseImmune activationDendritic cells in a pinch: Migration during homeostasis.
Olson E, Eisenbarth S. Dendritic cells in a pinch: Migration during homeostasis. Science Immunology 2024, 9: eadt3806. PMID: 39365873, DOI: 10.1126/sciimmunol.adt3806.Peer-Reviewed Original ResearchConceptsDendritic cellsTwo-dose priming immunization amplifies humoral immunity by synchronizing vaccine delivery with the germinal center response
Bhagchandani S, Yang L, Lam J, Maiorino L, Ben-Akiva E, Rodrigues K, Romanov A, Suh H, Aung A, Wu S, Wadhera A, Chakraborty A, Irvine D. Two-dose priming immunization amplifies humoral immunity by synchronizing vaccine delivery with the germinal center response. Science Immunology 2024, 9: eadl3755-eadl3755. PMID: 39303017, PMCID: PMC11492009, DOI: 10.1126/sciimmunol.adl3755.Peer-Reviewed Original ResearchConceptsDendritic cellsGerminal centersHumoral immunityAntigen-specific germinal centerGerminal center responseSubunit vaccineFollicular dendritic cellsPrimary immune responseIncreased T<sub>rDose 7 daysPrime immunizationGC responseImmune responseVaccine deliveryCenter responseAdministered vaccinesImmunityVaccineRegimensAdjuvant vaccineDoseCellsHIVResponseBolusCarbohydrate-Lectin Interactions Reprogram Dendritic Cells to Promote Type 1 Anti-Tumor Immunity
Lensch V, Gabba A, Hincapie R, Bhagchandani S, Basak A, Alam M, Noble J, Irvine D, Shalek A, Johnson J, Finn M, Kiessling L. Carbohydrate-Lectin Interactions Reprogram Dendritic Cells to Promote Type 1 Anti-Tumor Immunity. ACS Nano 2024, 18: 26770-26783. PMID: 39283240, PMCID: PMC11646345, DOI: 10.1021/acsnano.4c07360.Peer-Reviewed Original ResearchCellular immunityDendritic cellsToll-like receptorsVirus-like particlesCD8<sup>+</sup> T cellsTumor-specific cellular immunityVaccine developmentCancer vaccine developmentInfiltrate solid tumorsMurine melanoma modelT cell functionInhibited tumor growthActivate TLR signalingTumor controlCancer immunotherapyCD4<sup>+</sup>Melanoma modelTLR7 agonistDC activationT cellsSolid tumorsTumor cellsTumor growthHumoral immunityVLP platformCross-tissue organization of myeloid cells in scleroderma and related fibrotic diseases
Odell I. Cross-tissue organization of myeloid cells in scleroderma and related fibrotic diseases. Current Opinion In Rheumatology 2024, 36: 379-386. PMID: 39171604, PMCID: PMC11451931, DOI: 10.1097/bor.0000000000001047.Peer-Reviewed Original ResearchScRNA-seqIdiopathic pulmonary fibrosisMyeloid cell typesScRNA-seq studiesScRNA-seq analysisSingle-cell RNA sequencingCell typesDendritic cellsFc receptor genesScleroderma skinExpression of EREGLung fibrosis severityFibrotic diseasesMyeloid cell populationsRNA sequencingMultiple tissuesSignaling mechanismsReceptor geneMyeloid cellsSSc skinPulmonary fibrosisFibrosis severityLung fibrosisCardiac fibrosisSPP1Spatial transcriptomics elucidates medulla niche supporting germinal center response in myasthenia gravis-associated thymoma
Yasumizu Y, Kinoshita M, Zhang M, Motooka D, Suzuki K, Nojima S, Koizumi N, Okuzaki D, Funaki S, Shintani Y, Ohkura N, Morii E, Okuno T, Mochizuki H. Spatial transcriptomics elucidates medulla niche supporting germinal center response in myasthenia gravis-associated thymoma. Cell Reports 2024, 43: 114677. PMID: 39180749, DOI: 10.1016/j.celrep.2024.114677.Peer-Reviewed Original ResearchMyasthenia gravisMedullary thymic epithelial cellsGerminal center responseRegulatory T cellsImmune cell compositionMigratory dendritic cellsThymic epithelial cellsCortico-medullary junctionImmune microenvironmentDendritic cellsT cellsChemokine patternsThymus abnormalitiesHyperplasia samplesThymomaSpatial transcriptomic analysisEpithelial cellsMG pathologyMedullary regionCenter responseMedullaCell compositionCortical regionsPathologyCellsStem cells tightly regulate dead cell clearance to maintain tissue fitness
Stewart K, Abdusselamoglu M, Tierney M, Gola A, Hur Y, Gonzales K, Yuan S, Bonny A, Yang Y, Infarinato N, Cowley C, Levorse J, Pasolli H, Ghosh S, Rothlin C, Fuchs E. Stem cells tightly regulate dead cell clearance to maintain tissue fitness. Nature 2024, 633: 407-416. PMID: 39169186, PMCID: PMC11390485, DOI: 10.1038/s41586-024-07855-6.Peer-Reviewed Original ResearchStem cellsImmune-privileged nicheHair follicle stem cellsStem cell functionFollicle stem cellsTissue fitnessMesenchymal tissue cellsBillions of cellsDendritic cellsTissue stemProgenitor cellsPreserving tissue integrityDead cell clearanceClearance genesCell clearanceCell functionFunctional evidenceDying CellsHealthy counterpartsCell deathNon-motileTissue cellsHair cycleProfessional phagocytesApoptotic corpsesNanoparticles loaded with IL-2 and TGF-β promote transplantation tolerance to alloantigen
Horwitz D, Wang J, Kim D, Kang C, Brion K, Bickerton S, La Cava A. Nanoparticles loaded with IL-2 and TGF-β promote transplantation tolerance to alloantigen. Frontiers In Immunology 2024, 15: 1429335. PMID: 39131162, PMCID: PMC11310063, DOI: 10.3389/fimmu.2024.1429335.Peer-Reviewed Original ResearchNP-treated miceT regulatory cellsMixed lymphocyte reactionDendritic cellsTolerogenic nanoparticlesAllogeneic cellsIL-2CD8+ T regulatory cellsGraft-versus-host diseaseAlloantigen-specific TregInhibition of mixed lymphocyte reactionTGF-bRecipient dendritic cellsGraft-versus-hostTolerogenic dendritic cellsResponse to alloantigensTolerance to alloantigensStrains of miceAlloantigen immunizationDecreased alloreactivityTolerogenic phenotypeCD4+Allogeneic splenocytesAllograft rejectionImmune suppressionThe Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity
Nguyen N, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers 2024, 16: 2608. PMID: 39061247, PMCID: PMC11274444, DOI: 10.3390/cancers16142608.Peer-Reviewed Original ResearchCAR-T cellsLimitations of CAR-T cellsChimeric antigen receptor T cellsBiology of solid tumorsAdoptive cell therapyAnti-tumor immunityCo-stimulatory domainTransgenic cytokinesHLA incompatibilityMode of actionNK cellsHLA compatibilitySwitch receptorsDendritic cellsTumor microenvironmentHematologic neoplasiaT cellsHematological tumorsSolid tumorsImmune cellsAntigen presentationCell therapyCAR activationCellular vehiclesResponse rateDendritic cells in food allergy, treatment, and tolerance
Liu E, Yin X, Siniscalco E, Eisenbarth S. Dendritic cells in food allergy, treatment, and tolerance. Journal Of Allergy And Clinical Immunology 2024, 154: 511-522. PMID: 38971539, PMCID: PMC11414995, DOI: 10.1016/j.jaci.2024.06.017.Peer-Reviewed Original ResearchAntigen presenting cellsDendritic cellsFood allergyOral tolerancePresenting cellsAllergic sensitizationPeripheral T regulatory cellsDevelopment of oral toleranceGut dendritic cellsT regulatory cellsDendritic cell subsetsLimited treatment optionsAdaptive immune responsesFood immunotherapyEpicutaneous immunotherapyCell subsetsTolerogenic programAlarmin releaseTreatment optionsLangerhans cellsFood toleranceInnocuous antigensSurface markersInflammatory conditionsImmune response
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply