Skip to Main Content

INFORMATION FOR

    Richard Lifton, MD, PhD

    Professor (Adjunct) of Genetics
    DownloadHi-Res Photo

    About

    Titles

    Professor (Adjunct) of Genetics

    Biography

    Richard Lifton is Professor, Adjunct of Genetics. Lifton was the Chair of the Department of Genetics from 1998-2016, Sterling Professor of Genetics and Internal Medicine, Founder and Executive Director of the Yale Center for Genome Analysis and Investigator of the Howard Hughes Medical Institute at Yale School of Medicine.He graduated summa cum laude from Dartmouth College, then received MD and PhD degrees (in Biochemistry) from Stanford University. Following clinical training in Internal Medicine at Brigham and Women’s Hospital, he continued on the faculty at Harvard Medical School before being recruited to Yale in 1993.

    Lifton has used human genetics and genomics to identify rare mutations with large effect and elucidate biochemical mechanisms underlying diverse common diseases.In the particular case of hypertension, which affects more than a billion people worldwide and is a principal risk factor for heart attack, stroke and heart failure, together the leading cause of death worldwide, Lifton’s work has identified mutations and biochemical mechanisms that drive blood pressure to the highest and lowest blood pressures compatible with survival, implicating altered renal salt reabsorption in blood pressure variation. This work has also identified a previously unrecognized pathway that orchestrates the balance between salt and potassium homeostasis, providing a mechanism for dietary potassium’s ability to lower blood pressure. These findings provided the scientific basis for reducing salt balance in the prevention and treatment of hypertension, strategies that are used worldwide. Finding mutations underlying extreme outliers of common disease to identify pathways that can manipulated for health benefit has been broadly applied.

    In 2009 Lifton’s group developed exome sequencing, selectively sequencing all of the genes in the human genome at very low cost, and demonstrated the utility of the technology by performing the first clinical diagnosis by genome-level sequencing. This technology has been widely used for discovery of hundreds of disease and trait loci. Lifton’s group has used this technology to discover genes underlying diverse cardiovascular, renal, and neoplastic diseases. These include discovery of mutations in chromatin modifiers that underlie congenital heart disease, and discovery that hormone-producing tumors are commonly caused by single somatic mutations.

    Lifton is an elected member of the National Academy of Sciences, the National Academy of Medicine and the American Academy of Arts and Sciences.He has served on the Governing Councils of the National Academy of Sciences, the National Academy of Medicine, the Advisory Council to the NIH Director, the Scientific Advisory Boards of the Whitehead Institute of MIT, the Broad Institute of MIT and Harvard, the Simons Foundation for Autism Research and the Massachusetts General Hospital. He has also served as Co-Chair of the Planning Committee for the President’s Precision Medicine Initiative.

    Lifton has received the highest scientific awards of the American Heart Association, the American Society of Nephrology, the Council for High Blood Pressure Research, the American Society of Hypertension, the International Society of Hypertension, and the International Society of Nephrology.He received the 2008 Wiley Prize for Biomedical Sciences and the 2014 Breakthrough Prize in Life Sciences.

    Appointments

    • Genetics

      Professor Adjunct
      Primary

    Other Departments & Organizations

    Education & Training

    PhD
    Stanford University (1986)
    MD
    Stanford University (1982)
    BA
    Dartmouth College (1975)

    Research

    Overview

    By investigation of rare families recruited from around the world with extreme phenotypes suggesting genetic causation, we have identified genes that cause to these traits, putting a molecular face on their pathogenesis. In 2009 we reduced to practice the rapid and inexpensive sequencing of all genes in the genome and have used this platform for discovery of rare mutations with large effect in cardiovascular disease, cancer, kidney disease, skin disease and immunologic disease. These studies have revealed new pathways and mechanisms that regulate metabolic traits including blood pressure, bone mass, and electrolyte homeostasis, and genes that when mutated cause diverse diseases including heart attacks, strokes, kidney disease, cancer, autoinflammatory disease, skin disease and congenital heart disease. These studies have defined new strategies for disease gene discovery and point to the opportunity to determine the consequence of mutation of every gene in the human genome.

    Medical Research Interests

    Genetics; Hyperaldosteronism; Lymphoma, T-Cell, Cutaneous; Mutation; Nephrology

    Research at a Glance

    Yale Co-Authors

    Frequent collaborators of Richard Lifton's published research.

    Publications

    2024

    2023

    Clinical Trials

    Current Trials

    Academic Achievements & Community Involvement

    • honor

      Breakthrough Prize in Life Sciences

    • honor

      Member

    • activity

      YALE-UCL Collaborative

    • activity

      Transatlantic Network on Hypertension-Renal Salt Handling in the Control of Blood Pressure

    • honor

      Doctor of Science (Honorary)

    Get In Touch

    Contacts

    Academic Office Number