Skip to Main Content

INFORMATION FOR

    Jorge Galán, PhD, DVM

    Lucille P. Markey Professor of Microbial Pathogenesis and Professor of Cell Biology
    DownloadHi-Res Photo

    Contact Info

    Microbial Pathogenesis

    Boyer Center for Molecular Medicine, 295 Congress Av.

    New Haven, CT 06536-0812

    United States

    About

    Titles

    Lucille P. Markey Professor of Microbial Pathogenesis and Professor of Cell Biology

    Biography

    Dr. Jorge E. Galán earned his DVM from the National University of La Plata (Argentina) and his Ph.D. in Microbiology from Cornell University. He completed postdoctoral studies at Washington University in St. Louis, and was in the Faculty at SUNY Stony Brook before coming to Yale in 1998. He is currently the Lucille B. Markey Professor of Microbiology and Professor of Cell Biology at the Yale University School of Medicine. Dr. Galán is the recipient of numerous honors and awards including the Pew Scholar in Biomedical Sciences, the Searle Scholar Award, the National Institutes of Health MERIT award in 2000 and 2015, the Hans Sigrist Prize, the Alexander M. Cruickshank Award, and the Robert Koch Prize. He is a member of the American Academy of Microbiology, the German Academy of Sciences Leopoldina, a fellow of the American Association for the Advancement of Sciences, and a member of the USA National Academy of Science and the USA National Academy of Medicine. He is a member of several Scientific Advisory Boards and has authored more than 200 publications in the field of bacterial pathogenesis and molecular biology.

    Appointments

    Education & Training

    Postdoctoral fellow
    Washington University (1990)
    PhD
    Cornell University (1986)
    DVM
    National University of La Plata (1980)

    Research

    Overview

    Microbial pathogens have evolved unique ways to interact with their hosts. In many instances the terms of this interaction reflect the co-evolutionary balance that the host and pathogen must reach in order to secure
    their survival. It is therefore not surprising that bacterial pathogens have evolved a large array of virulence
    factors well suited to interfere with or stimulate a variety of host-cell responses in order to invade, survive and replicate within their hosts. The identification and characterization of these virulence factors is proving to be a fruitful area of research in more ways than expected.

    The understanding of how pathogens interact with their hosts is not only providing the basis for the development of novel therapeutic approaches but also a number of very sophisticated tools for probing basic aspects of cellular physiology and immunology. Our laboratory studies the pathogenesis of two intestinal pathogens, Salmonella enterica and Campylobacter jejuni. Combined, these two pathogens account for the vast majority of cases of infectious diarrhea world-wide leading to an estimated 2,000,000 deads. We are interested in characterizing the bacterial determinants involved in these interactions as well as the cell biology and immunobiology of this process.

    We take a multidisciplinary approach in our studies involving bacterial genetics, biochemistry, cell biology, immunology as well as structural biology. As a result, we are beginning to define not only the molecular details of the host pathogen interactions but also the atomic interphase between these pathogens and the host. Our laboratory has also an interest in vaccine development that stems from our discovery of a specialized organelle in Salmonella enterica (the “type III secretion system”) that mediates the transfer of bacterial proteins into host cells. We have harnessed this system for the delivery of heterologous proteins as a means to delivery antigens to the Class I and Class II antigen presenting pathways by avirulent strains of Salmonella.

    Specific areas of interest include:

    • The study of type III protein secretion machines, specialized bacterial organelles whose function is to delivery bacterial proteins into eukaryotic host cells. We are interested in understanding the mechanism of action of this multi-protein machine, as well as to understand the activities of the effector proteins delivered by this machine. We carried out these studies in Salmonella enterica but it is expected that knowledge gained from these studies may help understand the pathogenesis of many other bacteria since this system is conserved and widespread among several important pathogens.
    • The harnessing of the protein-delivery capability of the type III secretion machine for the development of therapeutic approaches, including vaccines.
    • The development of strategies that target the activities of type III secretion systems with the ultimate goal of developing new therapeutics to combat diseases caused by pathogens that encode these protein-delivery machines.
    • The study the mechanism of pathogenesis of Salmonella typhi, which causes typhoid fever in humans, a life-threatening disease that causes more than 200,000 deaths world-wide. We focus our efforts on the study of "typhoid toxin", a toxin exclusively produced by Salmonella typhi that we recently identified and it is central for the pathogenesis of typhoid fever.
    • The study of the mechanisms by which Campylobacter jejuni is able to colonize the gut and the role of the intestinal microbiota in both, facilitating and preventing colonization.
    • The investigation of the in vivo metabolism of C. jejuni. We are specifically interested in identifying its carbon sources and respiration substrates during infection and the contribution of the intestinal microbiota in providing those nutrients.

    Medical Research Interests

    Analytical, Diagnostic and Therapeutic Techniques and Equipment; Campylobacter; Cell Biology; Cryoelectron Microscopy; Host-Pathogen Interactions; Immunity, Innate; Inflammation; Microbiology; Microbiota; Microscopy; Microscopy, Fluorescence; Salmonella; Type III Secretion Systems

    Research at a Glance

    Yale Co-Authors

    Frequent collaborators of Jorge Galán's published research.

    Publications

    2024

    2023

    2022

    2019

    2016

    2015

    2008

    2007

    Academic Achievements & Community Involvement

    • activity

      Biomed Central

    • activity

      Cold Spring Harbor Laboratories

    • activity

      Gordon Conferences

    • activity

      Cell Host & Microbe

    • activity

      Advisory Board

    Get In Touch

    Contacts

    Academic Office Number
    Mailing Address

    Microbial Pathogenesis

    Boyer Center for Molecular Medicine, 295 Congress Av.

    New Haven, CT 06536-0812

    United States