2024
AT1b receptors contribute to regional disparities in angiotensin II mediated aortic remodelling in mice
Cavinato C, Spronck B, Caulk A, Murtada S, Humphrey J. AT1b receptors contribute to regional disparities in angiotensin II mediated aortic remodelling in mice. Journal Of The Royal Society Interface 2024, 21: 20240110. PMID: 39192727, PMCID: PMC11350382, DOI: 10.1098/rsif.2024.0110.Peer-Reviewed Original ResearchConceptsAngiotensin II infusionAT1B receptorsII infusionAngiotensin IIChronic angiotensin II infusionDays of angiotensin II infusionWild-typeAortas of WTSmooth muscle contractilityDescending thoracic aortaAngiotensin II signalingInflammatory cell responseRenin-angiotensin systemRegulating blood pressureAngII infusionAortic remodelingCell biological changesImmunohistological changesIndependent of sexMuscle contractilityMale miceMouse modelAbdominal aortaArterial remodelingBlood pressureStiffening of the human proximal pulmonary artery with increasing age
Manning E, Mishall P, Ramachandra A, Hassab A, Lamy J, Peters D, Murphy T, Heerdt P, Singh I, Downie S, Choudhary G, Tellides G, Humphrey J. Stiffening of the human proximal pulmonary artery with increasing age. Physiological Reports 2024, 12: e16090. PMID: 38884325, PMCID: PMC11181131, DOI: 10.14814/phy2.16090.Peer-Reviewed Original ResearchConceptsProximal pulmonary arteriesPulmonary arteryAge-related stiffeningRight ventricular ejection fractionVentricular ejection fractionMean wall thicknessEjection fractionNo significant differenceSystemic circulationLuminal caliberDiffusing capacityArterial stiffeningIncreasing ageSignificant differenceDistensionArteryWall thicknessAdverse effectsWall strainVessel diameterCyclic biaxial strainOrgan donorsAgeMicrostructural remodeling
2018
Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences
Ferruzzi J, Madziva D, Caulk AW, Tellides G, Humphrey JD. Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomechanics And Modeling In Mechanobiology 2018, 17: 1281-1295. PMID: 29754316, PMCID: PMC8344131, DOI: 10.1007/s10237-018-1026-7.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAorta, AbdominalAorta, ThoracicBiomechanical PhenomenaCardiovascular DiseasesCardiovascular SystemCarotid ArteriesCarotid Artery, CommonDiastoleDisease Models, AnimalElastinExtracellular Matrix ProteinsHemodynamicsHomeostasisHumansMaleMiceModels, CardiovascularPressureRecombinant ProteinsStress, MechanicalTime FactorsVascular StiffnessConceptsCentral arteriesMale wild-type miceArterial wallAberrant matrix remodelingCentral pulse pressureInfrarenal abdominal aortaCommon carotid arteryWild-type miceDiastolic functionCardiovascular consequencesCardiac massHemodynamic sequelaePulse pressureAbdominal aortaThoracic aortaArterial agingVascular agingCommon findingTreatment strategiesCarotid arteryArteryLeft ventricleCarotid vesselsCentral vesselsVivo axial stretch
2016
Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension
Bersi M, Bellini C, Wu J, Montaniel KR, Harrison DG, Humphrey JD. Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension. Hypertension 2016, 67: 890-896. PMID: 27001298, PMCID: PMC4833633, DOI: 10.1161/hypertensionaha.115.06262.Peer-Reviewed Original ResearchConceptsAngiotensin II infusion modelAngiotensin-Induced HypertensionMost clinical assessmentsIntimal-medial thickeningWild-type miceNormal mechanical functionBlood pressureArterial stiffeningThoracic aortaInflammatory responseClinical assessmentEnd organsExuberant productionBlood flowCentral arteriesAdventitial collagenHypertensionWall stressExcessive accumulationInfusion modelMechanical functionWeeksCollagen resultsInflammationArtery
2014
Myh 11 R 247 C / R 247 C mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity
Bellini C, Wang S, Milewicz DM, Humphrey JD. Myh 11 R 247 C / R 247 C mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity. Journal Of Biomechanics 2014, 48: 113-121. PMID: 25433566, PMCID: PMC4283495, DOI: 10.1016/j.jbiomech.2014.10.031.Peer-Reviewed Original ResearchConceptsThoracic aortaSevere vascular phenotypeAortic aneurysmContractile proteinsLocalized poolsMedial smooth muscle cellsEpigenetic factorsGenetic studiesThoracic aortic diseaseThoracic aortic aneurysmSmooth muscle cellsSuch mutationsMutationsC mutationAortic dissectionAortic diseaseHistopathologic characteristicsMuscle cellsRisk factorsGlycosaminoglycans/proteoglycansNormal adaptationMouse modelNormal biomechanicsAortic structureAorta