2025
Collagen Hybridizing Peptide-Based Radiotracers for Molecular Imaging of Collagen Turnover in Pulmonary Fibrosis.
Ahmad A, Ghim M, Kukreja G, Neishabouri A, Zhang Z, Li J, Salarian M, Toczek J, Gona K, Hedayatyanfard K, Morrison T, Zhang J, Huang Y, Liu C, Yu S, Sadeghi M. Collagen Hybridizing Peptide-Based Radiotracers for Molecular Imaging of Collagen Turnover in Pulmonary Fibrosis. Journal Of Nuclear Medicine 2025, 66: 425-433. PMID: 39915119, PMCID: PMC11876730, DOI: 10.2967/jnumed.124.268832.Peer-Reviewed Original ResearchConceptsPulmonary fibrosisTracer uptakeLung uptakeMurine model of pulmonary fibrosisModel of pulmonary fibrosisMice 3 wkEffect of antifibrotic therapyCollagen turnoverInterstitial lung diseaseClinical diagnostic methodsSPECT/CT imagingHybrid tracersLung histologyAntifibrotic therapyControl miceDisease activityMurine modelLung diseaseMice 8Tissue fibrosisPatient managementLiver uptakeSPECT/CTFibrosisSPECT images
2024
P2X 7-receptor binding in new-onset and secondary progressive MS – a [11C]SMW139 PET study
Lehto J, Aarnio R, Tuisku J, Sucksdorff M, Koivumäki E, Nylund M, Helin S, Rajander J, Danon J, Gilchrist J, Kassiou M, Oikonen V, Airas L. P2X 7-receptor binding in new-onset and secondary progressive MS – a [11C]SMW139 PET study. EJNMMI Research 2024, 14: 123. PMID: 39636350, PMCID: PMC11621262, DOI: 10.1186/s13550-024-01186-3.Peer-Reviewed Original ResearchPerilesional rimTracer bindingDisability progressionMS patientsMS brainsLesion rimWhite matterProgressive MS patientsPro-inflammatory microgliaRelapsed patientsSmoldering inflammationT1 lesionsMales compared to femalesNew-onsetProgressive patientsTracer uptakeParent tracerP2XDisease durationProgressive MSHealthy controlsPatientsPET studiesPerilesional areaFree fraction
2022
Examining the effects of age and sex on tau PET binding in the absence of beta‐amyloid pathology
Gordon B, Flores S, Dincer A, Keefe S, McKay N, Hobbs D, Wisch J, Hornbeck R, Franklin E, Jack C, Koeppe R, Xiong C, McDade E, van Dyck C, Klein G, Pariente J, Bateman R, Morris J, Perrin R, Benzinger T. Examining the effects of age and sex on tau PET binding in the absence of beta‐amyloid pathology. Alzheimer's & Dementia 2022, 18 DOI: 10.1002/alz.063285.Peer-Reviewed Original ResearchPrimary age-related tauopathyTau-PET bindingTau-PETTemporal gyrusPET bindingBeta-amyloid pathologyAge-related tauopathyRostral middle frontal gyrusSubthreshold levelsElevated tracer uptakeTau PET imagingTau bindingInferior temporal gyrusInferior temporal cortexMiddle frontal gyrusSuperior temporal gyrusEffect of ageAlzheimer pathologyAmyloid pathologySignificant positive associationLateral parietalTemporal cortexTracer uptakeAlzheimer's diseaseSecondary analysis
2021
Assessment of test-retest reproducibility of [18F]SynVesT-1, a novel radiotracer for PET imaging of synaptic vesicle glycoprotein 2A
Li S, Naganawa M, Pracitto R, Najafzadeh S, Holden D, Henry S, Matuskey D, Emery PR, Cai Z, Ropchan J, Nabulsi N, Carson RE, Huang Y. Assessment of test-retest reproducibility of [18F]SynVesT-1, a novel radiotracer for PET imaging of synaptic vesicle glycoprotein 2A. European Journal Of Nuclear Medicine And Molecular Imaging 2021, 48: 1327-1338. PMID: 33416954, DOI: 10.1007/s00259-020-05149-3.Peer-Reviewed Original ResearchConceptsTest-retest reproducibilityTime-activity curvesBPND valuesNonhuman primatesAbsolute test-retest variabilitySynaptic vesicle glycoprotein 2AHigh brain uptakeNon-displaceable binding potentialExcellent test-retest reproducibilityGray matter areasHealthy human subjectsHigh uptakeTest-retest variabilityDynamic PET scanningTest-retest reliabilityBrain uptakeDistribution volume valuesCentrum semiovaleUrinary bladderOne-tissue compartment modelMaximum SUVPET scanningPET scansTracer uptakeBrain disorders
2020
Accuracy of arterial [18F]-Fluorodeoxyglucose uptake quantification: A kinetic modeling study
Toczek J, Wu J, Hillmer AT, Han J, Esterlis I, Cosgrove KP, Liu C, Sadeghi MM. Accuracy of arterial [18F]-Fluorodeoxyglucose uptake quantification: A kinetic modeling study. Journal Of Nuclear Cardiology 2020, 27: 1578-1581. PMID: 32043239, PMCID: PMC7415600, DOI: 10.1007/s12350-020-02055-x.Peer-Reviewed Original ResearchConceptsMean SUVmaxMean TBRmaxFDG signalAortic wallMaximal standardized uptake valueD-glucose (FDG) PETVessel wall inflammationStandardized uptake valueActivity ex vivoPET imaging agentVascular inflammationWall inflammationRecent guidelinesBlood ratioCardiovascular diseasePrior historyPlasma activityTracer uptakeUptake valueSUVmaxTBRmaxEx vivoArterial wallVascular imagingFDG
2018
Reduced task durations in functional PET imaging with [18F]FDG approaching that of functional MRI
Rischka L, Gryglewski G, Pfaff S, Vanicek T, Hienert M, Klöbl M, Hartenbach M, Haug A, Wadsak W, Mitterhauser M, Hacker M, Kasper S, Lanzenberger R, Hahn A. Reduced task durations in functional PET imaging with [18F]FDG approaching that of functional MRI. NeuroImage 2018, 181: 323-330. PMID: 29966719, DOI: 10.1016/j.neuroimage.2018.06.079.Peer-Reviewed Original ResearchConceptsFunctional MRIPercent signal changeTask-specific changesMotor cortexGlucose metabolismIpsilateral motor cortexImaging modalitiesSupplementary motor areaSecondary visual cortexHybrid PET/MRI scannerConstant infusion protocolTask-specific activationInfusion protocolDifferent activation patternsHealthy subjectsMotor areaArterial samplesCMRgluConstant infusionDifferent imaging modalitiesTracer uptakeVisual cortexSignificant associationUnspecific activationPET/MRI scannerDecreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging
Cline GW, Naganawa M, Chen L, Chidsey K, Carvajal-Gonzalez S, Pawlak S, Rossulek M, Zhang Y, Bini J, McCarthy TJ, Carson RE, Calle RA. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia 2018, 61: 2598-2607. PMID: 29721633, DOI: 10.1007/s00125-018-4624-0.Peer-Reviewed Original ResearchConceptsVesicular monoamine transporter type 2Type 2 diabetesBeta-cell massHealthy obese volunteersStandardised uptake value ratioBeta-cell functionTest-retest variabilityPancreas headTracer uptakeSUVR-1Type 2 diabetes mellitusType 2 diabetic participantsBeta-cell capacityConclusions/interpretationTheC-peptide AUCImpaired glucose toleranceType 2 diabetes pathophysiologyCell functionDeficient insulin secretionAcute insulin responsePancreas of humansUptake value ratioC-peptide releasePancreatic polypeptide cellsTransporter type 2
2016
First-in-Human Assessment of the Novel PDE2A PET Radiotracer 18F-PF-05270430
Naganawa M, Waterhouse RN, Nabulsi N, Lin SF, Labaree D, Ropchan J, Tarabar S, DeMartinis N, Ogden A, Banerjee A, Huang Y, Carson RE. First-in-Human Assessment of the Novel PDE2A PET Radiotracer 18F-PF-05270430. Journal Of Nuclear Medicine 2016, 57: 1388-1395. PMID: 27103022, PMCID: PMC5093918, DOI: 10.2967/jnumed.115.166850.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAzabicyclo CompoundsAzetidinesBrainComputer SimulationCyclic Nucleotide Phosphodiesterases, Type 2Feasibility StudiesFemaleHumansIsotope LabelingMacaca mulattaMaleMetabolic Clearance RateModels, BiologicalMolecular ImagingOrgan SpecificityPilot ProjectsPositron-Emission TomographyRadiopharmaceuticalsReproducibility of ResultsSensitivity and SpecificityTissue DistributionConceptsTest-retest variabilityHuman studiesPET ligandWhite matterNeocortical regionsMultilinear analysis 1MSv/MBqHealthy male subjectsDetectable pharmacologic effectsAppropriate tracer kinetic modelsTest-retest protocolAdverse eventsBrain uptakePharmacologic effectsRegional time-activity curvesTarget doseTime-activity curvesTracer uptakeMale subjectsWhole brainBrain regionsEffective doseCritical organsPET radiotracersNonhuman primates
2014
Imaging Vessel Wall Biology to Predict Outcome in Abdominal Aortic Aneurysm
Golestani R, Razavian M, Nie L, Zhang J, Jung JJ, Ye Y, de Roo M, Hilgerink K, Liu C, Robinson SP, Sadeghi MM. Imaging Vessel Wall Biology to Predict Outcome in Abdominal Aortic Aneurysm. Circulation Cardiovascular Imaging 2014, 8 PMID: 25550400, PMCID: PMC4284949, DOI: 10.1161/circimaging.114.002471.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin IIAnimalsAntigens, CDAntigens, Differentiation, MyelomonocyticAorta, AbdominalAortic Aneurysm, AbdominalAortic RuptureAortographyBiomarkersDisease Models, AnimalDisease ProgressionEnzyme ActivationFeasibility StudiesMaleMatrix MetalloproteinasesMice, Inbred C57BLMice, TransgenicMolecular ImagingMultimodal ImagingPredictive Value of TestsRadiopharmaceuticalsRisk AssessmentRisk FactorsTime FactorsTomography, Emission-Computed, Single-PhotonTomography, X-Ray ComputedConceptsMicro-single photon emissionAngiotensin IIMatrix metalloproteinasesAortic diameterSuprarenal aortaCD68 expressionMMP activityPotential of MMPSaline-infused miceVessel wall inflammationAbdominal aortic aneurysmPrediction of outcomePhoton emissionRupture riskMurine AAAsAortic expansionRisk stratificationWall inflammationAortic aneurysmSpontaneous ruptureSmall aneurysmsMouse modelControl animalsTracer uptakeAbdominal aortic aneurysm (AAA) rupture risk
2013
Lipid lowering and imaging protease activation in atherosclerosis
Razavian M, Nie L, Challa A, Zhang J, Golestani R, Jung JJ, Robinson S, Sadeghi MM. Lipid lowering and imaging protease activation in atherosclerosis. Journal Of Nuclear Cardiology 2013, 21: 319-328. PMID: 24368425, PMCID: PMC3991560, DOI: 10.1007/s12350-013-9843-7.Peer-Reviewed Original ResearchConceptsHigh-fat dietLipid-lowering interventionsHFD groupPlaque inflammationAtherosclerotic miceMicroSPECT/CT imagingTotal blood cholesterolModern therapeutic approachesSmooth muscle αMMP tracerFat dietBlood cholesterolPlaque biologyTherapeutic approachesTracer uptakeMatrix metalloproteinaseTherapeutic interventionsAtherosclerosisActin expressionCT imagingMuscle αWeeksFenofibrateMiceIntervention
2011
Atherosclerosis Plaque Heterogeneity and Response to Therapy Detected by In Vivo Molecular Imaging of Matrix Metalloproteinase Activation
Razavian M, Tavakoli S, Zhang J, Nie L, Dobrucki LW, Sinusas AJ, Azure M, Robinson S, Sadeghi MM. Atherosclerosis Plaque Heterogeneity and Response to Therapy Detected by In Vivo Molecular Imaging of Matrix Metalloproteinase Activation. Journal Of Nuclear Medicine 2011, 52: 1795-1802. PMID: 21969358, PMCID: PMC3235922, DOI: 10.2967/jnumed.111.092379.Peer-Reviewed Original ResearchConceptsHigh-fat dietSPECT/CTTracer uptakeMMP activationNormal chowMatrix metalloproteinasesApolipoprotein-deficient miceOil Red O stainingDevelopment of atherosclerosisMatrix metalloproteinase activationRed O stainingAtherosclerotic mouse aortasOil Red OHFD withdrawalMolecular imagingAreas of discordanceDietary modificationMacrophage infiltrationPlaque presenceMacrophage contentPlaque areaPlaque biologyAtherosclerotic plaquesMMP expressionMetalloproteinase activation
2010
Molecular Imaging of Matrix Metalloproteinase Activation to Predict Murine Aneurysm Expansion In Vivo
Razavian M, Zhang J, Nie L, Tavakoli S, Razavian N, Dobrucki LW, Sinusas AJ, Edwards DS, Azure M, Sadeghi MM. Molecular Imaging of Matrix Metalloproteinase Activation to Predict Murine Aneurysm Expansion In Vivo. Journal Of Nuclear Medicine 2010, 51: 1107-1115. PMID: 20554725, PMCID: PMC2908304, DOI: 10.2967/jnumed.110.075259.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApolipoproteins EArteriovenous FistulaAutoradiographyCarotid ArteriesCatalysisDisease ProgressionEnzyme ActivationImmunohistochemistryIndicators and ReagentsMatrix MetalloproteinasesMiceMice, KnockoutRadiopharmaceuticalsReverse Transcriptase Polymerase Chain ReactionSubstrate SpecificityTomography, Emission-ComputedTomography, Emission-Computed, Single-PhotonConceptsMatrix metalloproteinase activationMMP activationAneurysm inductionMetalloproteinase activationSPECT/CTCurrent imaging modalitiesPathogenesis of aneurysmsSpecific MMP inhibitorsGroups of animalsMMP tracerMolecular imagingArterial aneurysmsAneurysm expansionFocal uptakeDeficient miceCarotid aneurysmsCarotid arteryApolipoprotein ETracer uptakeAneurysmsMajor causeMMP inhibitorsVessel areaImaging modalitiesWk
2008
Molecular Imaging of Activated Matrix Metalloproteinases in Vascular Remodeling
Zhang J, Nie L, Razavian M, Ahmed M, Dobrucki LW, Asadi A, Edwards DS, Azure M, Sinusas AJ, Sadeghi MM. Molecular Imaging of Activated Matrix Metalloproteinases in Vascular Remodeling. Circulation 2008, 118: 1953-1960. PMID: 18936327, PMCID: PMC2637824, DOI: 10.1161/circulationaha.108.789743.Peer-Reviewed Original ResearchMeSH KeywordsAngioplasty, BalloonAnimalsApolipoproteins EAutoradiographyCarotid Artery InjuriesCarotid Artery, CommonDisease Models, AnimalFemaleFluorescent Antibody TechniqueIndiumMatrix Metalloproteinase 2Matrix Metalloproteinase 9MiceMice, Mutant StrainsSensitivity and SpecificityTomography, Emission-Computed, Single-PhotonConceptsVascular remodelingCarotid arteryCommon carotid artery injuryInjury-induced vascular remodelingCarotid wire injuryCarotid artery injuryMicroSPECT/CTMatrix metalloproteinase activationVessel wall areaArtery injuryCarotid injurySham surgerySignificant hyperplasiaContralateral arteryWire injuryFocal uptakeHyperplastic processesMicroSPECT imagingQuantitative autoradiographyTracer uptakeMetalloproteinase activationMMP activityArteryInjuryMatrix metalloproteinases
2006
In vivo selective binding of (R)-[11C]rolipram to phosphodiesterase-4 provides the basis for studying intracellular cAMP signaling in the myocardium and other peripheral tissues
Kenk M, Greene M, Thackeray J, deKemp RA, Lortie M, Thorn S, Beanlands RS, DaSilva JN. In vivo selective binding of (R)-[11C]rolipram to phosphodiesterase-4 provides the basis for studying intracellular cAMP signaling in the myocardium and other peripheral tissues. Nuclear Medicine And Biology 2006, 34: 71-77. PMID: 17210463, DOI: 10.1016/j.nucmedbio.2006.10.002.Peer-Reviewed Original ResearchMeSH Keywords3',5'-Cyclic-AMP PhosphodiesterasesAnimalsBrainCarbon RadioisotopesCyclic AMPCyclic Nucleotide Phosphodiesterases, Type 1Cyclic Nucleotide Phosphodiesterases, Type 4HeartMaleMetabolic Clearance RateMyocardiumOrgan SpecificityPhosphodiesterase InhibitorsProtein BindingRadionuclide ImagingRadiopharmaceuticalsRatsRats, Sprague-DawleyRolipramSensitivity and SpecificityTissue DistributionConceptsPhosphodiesterase 4BAY 60Ro 20Male Sprague-Dawley ratsIntracellular cAMPSprague-Dawley ratsNeurohormonal modulationPeripheral tissuesAutoradiography studiesAdipose tissuePDE4 levelsTracer uptakeVivo findingsCAMP-mediated signalingBiodistribution studiesPDE4 activityRolipramSkeletal muscleCAMP levelsTracer retentionCardiac regionCilostazolMyocardiumZaprinastTissue
2003
Electromechanical mapping for detecting myocardial viability and ischemia in patients with severe ischemic cardiomyopathy
Samady H, Liu Y, Choi CJ, Ragosta M, Pfau SE, Cleman MW, Powers ER, Kramer CM, Wackers F, Beller GA, Watson DD. Electromechanical mapping for detecting myocardial viability and ischemia in patients with severe ischemic cardiomyopathy. The American Journal Of Cardiology 2003, 91: 807-811. PMID: 12667565, DOI: 10.1016/s0002-9149(03)00013-4.Peer-Reviewed Original ResearchMeSH KeywordsAgedBody Surface Potential MappingCardiomyopathiesCell SurvivalElectrophysiologic Techniques, CardiacFemaleHumansMaleMiddle AgedMyocardial IschemiaMyocardiumPredictive Value of TestsRadiopharmaceuticalsRestROC CurveSensitivity and SpecificitySeverity of Illness IndexStatistics as TopicStress, PhysiologicalStroke VolumeTechnetium Tc 99m SestamibiTomography, Emission-Computed, Single-PhotonVentricular Dysfunction, LeftConceptsSevere ischemic cardiomyopathyIschemic cardiomyopathyViable myocardiumMyocardial viabilityDipyridamole single-photon emissionUnipolar voltageDysfunctional myocardial segmentsBipolar voltageSingle photon emissionDipyridamole SPECTDipyridamole technetiumQuantitative technetiumInducible ischemiaNonviable segmentsNonviable myocardiumElectromechanical mappingMyocardial segmentsTracer uptakePatientsViable segmentsLogistic regressionCardiomyopathyMyocardiumIschemiaSPECT
2002
Pharmacologic stress perfusion imaging with adenosine: Role of simultaneous low-level treadmill exercise
Samady H, Wackers FJ, Joska TM, Zaret BL, Jain D. Pharmacologic stress perfusion imaging with adenosine: Role of simultaneous low-level treadmill exercise. Journal Of Nuclear Cardiology 2002, 9: 188-196. PMID: 11986564, DOI: 10.1067/mnc.2002.119973.Peer-Reviewed Original ResearchConceptsLow-level treadmill exerciseMyocardial perfusion imagingTreadmill exerciseElectrocardiographic changesAdverse effectsAdenosine myocardial perfusion imagingSestamibi single-photon emissionPharmacologic stress myocardial perfusion imagingStress myocardial perfusion imagingIschemic electrocardiographic changesLow-level exerciseMore adverse effectsUnfavorable side effectsSingle photon emissionAdenosine studyAdenosine TcMore patientsMyocardial ischemiaHemodynamic responseStress perfusionSide effectsPerfusion imagingTracer uptakePatientsMPI studies
2000
Persistent Changes in Myocardial Glucose Metabolism In Vivo During Reperfusion of a Limited-Duration Coronary Occlusion
McNulty P, Jagasia D, Cline G, Ng C, Whiting J, Garg P, Shulman G, Soufer R. Persistent Changes in Myocardial Glucose Metabolism In Vivo During Reperfusion of a Limited-Duration Coronary Occlusion. Circulation 2000, 101: 917-922. PMID: 10694532, DOI: 10.1161/01.cir.101.8.917.Peer-Reviewed Original ResearchConceptsCoronary occlusionGlucose metabolismPostischemic stunningAnterolateral left ventricleHeart glucose metabolismCoronary artery occlusionRegional glucose metabolismMyocardial glucose metabolismRegional myocardial ischemiaRegional mechanical functionRapid reperfusionReversible coronary occlusionArtery occlusionMyocardial ischemiaIntact ratsPreferential shuntingBlood flowReperfusionTracer uptakeLeft ventricleGlycogen depletionMetabolic signaturesOcclusionPersistent changesSustained changes
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply