2022
Myocardial Suppression Protocols
Osborne M, Mezue K, Divakaran S. Myocardial Suppression Protocols. 2022, 47-54. DOI: 10.1007/978-3-031-09807-9_4.Peer-Reviewed Original ResearchTreatment of inflammatory cardiovascular diseasesPatient preparation strategiesMyocardial glucose metabolismInflammatory cardiovascular diseasesPositron emission tomographyImaging techniquesInflammatory cellsPatient populationConsensus recommendationsPathological inflammationPatient preparationPharmacological interventionsEmission tomographyCardiovascular diseaseNormal myocardiumPatientsGlucose metabolismMyocardiumMetabolismInflammationDiagnosisTomographyRenal Cell Carcinoma with Cardiac Metastases: A Case Report and Review of the Literature
Cahill E, Tabakin A, Shinder B, Bramwit M, Saraiya B, Xu X, Salazar C, Zhou Z, Singer E. Renal Cell Carcinoma with Cardiac Metastases: A Case Report and Review of the Literature. Journal Of Kidney Cancer 2022, 9: 32-38. PMID: 36118793, PMCID: PMC9431006, DOI: 10.15586/jkcvhl.v9i2.229.Peer-Reviewed Case Reports and Technical Notes
2020
A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart
Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, Martínez-de-Mena R, Castejón-Vega B, Pun-García A, Través PG, Bonzón-Kulichenko E, García-Marqués F, Cussó L, A-González N, González-Guerra A, Roche-Molina M, Martin-Salamanca S, Crainiciuc G, Guzmán G, Larrazabal J, Herrero-Galán E, Alegre-Cebollada J, Lemke G, Rothlin CV, Jimenez-Borreguero LJ, Reyes G, Castrillo A, Desco M, Muñoz-Cánoves P, Ibáñez B, Torres M, Ng LG, Priori SG, Bueno H, Vázquez J, Cordero MD, Bernal JA, Enríquez JA, Hidalgo A. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020, 183: 94-109.e23. PMID: 32937105, DOI: 10.1016/j.cell.2020.08.031.Peer-Reviewed Original ResearchConceptsPhagocytic receptor MertkNetwork of macrophagesVentricular dysfunctionCardiac stressCardiac macrophagesDefective eliminationMetabolic alterationsOrgan functionImpaired autophagyHealthy myocardiumMyocardial tissueMurine heartMacrophagesMetabolic demandsCardiomyocytesMetabolic stabilityHeartAutophagy machineryMitochondrial homeostasisDysfunctional mitochondriaHomeostasisMembranous particlesDysfunctionInflammasomeMyocardium
2019
Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment
Huang CY, Peres Moreno Maia-Joca R, Ong CS, Wilson I, DiSilvestre D, Tomaselli GF, Reich DH. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. Journal Of Molecular And Cellular Cardiology 2019, 138: 1-11. PMID: 31655038, DOI: 10.1016/j.yjmcc.2019.10.001.Peer-Reviewed Original ResearchConceptsInsulin-like growth factor-1HiPSC-CMsSarcoplasmic reticulum functionGrowth factor-1Pluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesCell-derived cardiomyocytesAdult cardiac phenotypeTDI treatmentContractile propertiesElectrophysiological propertiesThyroid hormonesCardiac phenotypeAdult myocardiumCardiac microtissuesPharmacological propertiesRecapitulate aspectsFactor 1Gene expression profilesHuman iPSCBiochemical factorsImmature stateMyocardiumStem cellsPluripotent stem cellsExtracellular Matrix From Hypertrophic Myocardium Provokes Impaired Twitch Dynamics in Healthy Cardiomyocytes
Sewanan LR, Schwan J, Kluger J, Park J, Jacoby DL, Qyang Y, Campbell SG. Extracellular Matrix From Hypertrophic Myocardium Provokes Impaired Twitch Dynamics in Healthy Cardiomyocytes. JACC Basic To Translational Science 2019, 4: 495-505. PMID: 31468004, PMCID: PMC6712054, DOI: 10.1016/j.jacbts.2019.03.004.Peer-Reviewed Original ResearchHypertrophic cardiomyopathySarcomeric gene mutationsMiniature swine modelPluripotent stem cell-derived cardiomyocytesExtracellular matrix abnormalitiesStem cell-derived cardiomyocytesPoor relaxationCell-derived cardiomyocytesHealthy cardiomyocytesExtracellular matrixMouse modelPharmacological correctionProlonged contractionSwine modelHealthy extracellular matrixMuscle contractionGene mutationsMatrix abnormalitiesTwitch dynamicsCardiomyocytesContractionCardiomyopathyTherapyMyocardiumAbnormalities
2017
Where do new endothelial cells come from in the injured heart?
Greif DM, Eichmann A. Where do new endothelial cells come from in the injured heart? Nature Reviews Cardiology 2017, 14: 507-508. PMID: 28770866, DOI: 10.1038/nrcardio.2017.121.Commentaries, Editorials and Letters
2016
Unexpected Rapid Improvement and Neurogenic Stunned Myocardium in a Patient With Acute Motor Axonal Neuropathy
Magid-Bernstein J, Al-Mufti F, Merkler AE, Roh D, Patel S, May TL, Agarwal S, Claassen J, Park S. Unexpected Rapid Improvement and Neurogenic Stunned Myocardium in a Patient With Acute Motor Axonal Neuropathy. Journal Of Clinical Neuromuscular Disease 2016, 17: 135-141. PMID: 26905914, DOI: 10.1097/cnd.0000000000000109.Peer-Reviewed Original ResearchConceptsNeurogenic stunned myocardiumMotor axonal neuropathyStunned myocardiumAxonal neuropathyAcute motor axonal neuropathyUpper respiratory illnessBarré syndromeNeurologic symptomsAntiganglioside antibodiesComplete tetraplegiaHealthy womenRespiratory illnessLumbar punctureMotor functionPhysical therapyRare casePlasmapheresisMycoplasma pneumoniaeRapid improvementAreflexiaNeuropathyPatientsTetraplegiaMyocardiumBlood
2015
PET imaging of a collagen matrix reveals its effective injection and targeted retention in a mouse model of myocardial infarction
Ahmadi A, Thorn SL, Alarcon EI, Kordos M, Padavan DT, Hadizad T, Cron GO, Beanlands RS, DaSilva JN, Ruel M, deKemp RA, Suuronen EJ. PET imaging of a collagen matrix reveals its effective injection and targeted retention in a mouse model of myocardial infarction. Biomaterials 2015, 49: 18-26. PMID: 25725551, DOI: 10.1016/j.biomaterials.2015.01.016.Peer-Reviewed Original ResearchConceptsMyocardial infarctionPositron emission tomographyPET imagingMouse modelNon-invasive PET imagingCardiac regeneration therapyIschemic territoryPET resultsInfarcted myocardiumEmission tomographyCollagen matrixMyocardial injectionEarly retentionPromising modalityRegeneration therapyInfarctionLabeling efficiencyMyocardiumFluorescence imagingImagingBiodistributionInjectionQdot labelingEx
2013
Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium
Turnbull IC, Karakikes I, Serrao GW, Backeris P, Lee J, Xie C, Senyei G, Gordon RE, Li RA, Akar FG, Hajjar RJ, Hulot J, Costa KD. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. The FASEB Journal 2013, 28: 644-654. PMID: 24174427, PMCID: PMC3898643, DOI: 10.1096/fj.13-228007.Peer-Reviewed Original ResearchConceptsHuman myocardiumPreclinical modelsCardiac tissueAlternative preclinical modelsAction potential durationFrank-Starling mechanismCycle length dependenceHuman embryonic stem cell-derived cardiomyocytesDose-response curveEmbryonic stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesHuman heart musclePositive chronotropicInotropic responseCardiac refractorinessCell-derived cardiomyocytesTrabecular musclesPotential durationPharmacodynamic modelMRNA expressionMyocardiumHeart muscleCardiac-specific genesTranslational researchCardiac electrophysiology
2011
Myocardial Viability and Survival in Ischemic Left Ventricular Dysfunction
Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, Drozdz J, Farsky PS, Feldman AM, Doenst T, Michler RE, Berman DS, Nicolau JC, Pellikka PA, Wrobel K, Alotti N, Asch FM, Favaloro LE, She L, Velazquez EJ, Jones RH, Panza JA. Myocardial Viability and Survival in Ischemic Left Ventricular Dysfunction. New England Journal Of Medicine 2011, 364: 1617-1625. PMID: 21463153, PMCID: PMC3290901, DOI: 10.1056/nejmoa1100358.Peer-Reviewed Original ResearchMeSH KeywordsAgedCardiovascular DiseasesCombined Modality TherapyCoronary Artery BypassCoronary Artery DiseaseEchocardiography, StressFemaleFollow-Up StudiesHeart FailureHumansKaplan-Meier EstimateMaleMiddle AgedMyocardial IschemiaMyocardiumProportional Hazards ModelsStatistics, NonparametricTomography, Emission-Computed, Single-PhotonVentricular Dysfunction, LeftConceptsCoronary artery diseaseVentricular dysfunctionMedical therapyMyocardial viabilityArtery diseaseViable myocardiumSurvival benefitBaseline variablesIschemic left ventricular dysfunctionDifferential survival benefitSubstudy of patientsCoronary artery bypassLeft ventricular dysfunctionDobutamine echocardiographyUnderwent assessmentPatientsCABGDysfunctionTreatment assignmentTherapyMyocardiumDiseaseGreater likelihoodMortalityTrials
2010
Ventricular Noncompaction and Associated Cardiac Anomalies
Lake M, Lerakis S, Willis P, Block P, Babaliaros V, Green J, Brown J, Nagpal S, Lerakis S. Ventricular Noncompaction and Associated Cardiac Anomalies. The American Journal Of The Medical Sciences 2010, 340: 399-401. PMID: 20856104, DOI: 10.1097/maj.0b013e3181ec9431.Peer-Reviewed Original ResearchConceptsVentricular noncompactionTranscatheter aortic valve implantationAssociated cardiac anomaliesAortic valve implantationLeft ventricular apexSubaortic stenosisAortic stenosisSevere hypertrophyValve implantationCardiac anomaliesAortic valveVentricular apexRare caseAuthors' institutionCardiac abnormalitiesLeft ventricleMuscular ridgeGrand roundsNoncompactionStenosisEchocardiogramHypokinesisHypertrophyVentricleMyocardium
2009
Shorter difference between myocardium and blood optimal inversion time suggests diffuse fibrosis in dilated cardiomyopathy
Han Y, Peters DC, Dokhan B, Manning WJ. Shorter difference between myocardium and blood optimal inversion time suggests diffuse fibrosis in dilated cardiomyopathy. Journal Of Magnetic Resonance Imaging 2009, 30: 967-972. PMID: 19856417, PMCID: PMC2862561, DOI: 10.1002/jmri.21953.Peer-Reviewed Original ResearchConceptsDCM patientsDiffuse fibrosisCardiovascular magnetic resonance studyLGE CMR imagesCardiomyopathy patientsHealthy controlsHealthy subjectsLGE-CMRHeart ratePatientsFibrosisOptimal inversion timeBloodMyocardiumMyocardium contrastInversion timeShort differencesBlood signalBlood SNRDCMOptimal timeLower CNRTNF Receptors Differentially Signal and Are Differentially Expressed and Regulated in the Human Heart
Al-Lamki R, Brookes AP, Wang J, Reid MJ, Parameshwar J, Goddard MJ, Tellides G, Wan T, Min W, Pober JS, Bradley JR. TNF Receptors Differentially Signal and Are Differentially Expressed and Regulated in the Human Heart. American Journal Of Transplantation 2009, 9: 2679-2696. PMID: 19788501, PMCID: PMC3517885, DOI: 10.1111/j.1600-6143.2009.02831.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell CycleCell DeathEndothelium, VascularEnzyme ActivationGraft RejectionHeart TransplantationHumansMAP Kinase Kinase Kinase 5MiceMice, KnockoutMyocardiumMyocytes, CardiacOrgan Culture TechniquesProtein-Tyrosine KinasesReceptors, Tumor Necrosis Factor, Type IReceptors, Tumor Necrosis Factor, Type IIRNA, MessengerTumor Necrosis Factor-alphaConceptsVascular endothelial cellsCardiac allograftsCell cycle entryApoptosis signal-regulating kinase 1Cycle entryExpression of TNFTNFR1 knockoutNecrosis factorTarget cell responseTNFTNF receptorCardiac fibroblastsCell responsesSignal-regulated kinases 1TNF responseASK1 activationMyocardiumEndothelial cellsEpithelial tyrosine kinaseTNFR2Human heartOrgan cultureTNFR1Etk activationAllografts
2008
Real-Time 3D Echocardiographic Quantification of Left Ventricular Volumes: Multicenter Study for Validation with Magnetic Resonance Imaging
Mor-Avi V, Jenkins C, Kühl H, Nesser H, Marwick T, Franke A, Ebner C, Freed B, Steringer-Mascherbauer R, Pollard H, Weinert L, Niel J, Sugeng L, Lang R. Real-Time 3D Echocardiographic Quantification of Left Ventricular Volumes: Multicenter Study for Validation with Magnetic Resonance Imaging. 2008, 25-28. DOI: 10.1109/cic.2008.4748968.Peer-Reviewed Original ResearchCardiac magnetic resonanceLV volumesRT3DE imagingCardiac magnetic resonance referenceCMR valuesEnd-diastolic LV volumeLeft ventricular (LVMitral valve planeMagnetic resonance imagingInter-institutional differencesMulticenter settingMulticenter studyRT3DE datasetsEnd-systoleValve planeResonance imagingParticipating institutionsMulticenterPatientsMagnetic resonanceMyocardium
2006
In vivo selective binding of (R)-[11C]rolipram to phosphodiesterase-4 provides the basis for studying intracellular cAMP signaling in the myocardium and other peripheral tissues
Kenk M, Greene M, Thackeray J, deKemp RA, Lortie M, Thorn S, Beanlands RS, DaSilva JN. In vivo selective binding of (R)-[11C]rolipram to phosphodiesterase-4 provides the basis for studying intracellular cAMP signaling in the myocardium and other peripheral tissues. Nuclear Medicine And Biology 2006, 34: 71-77. PMID: 17210463, DOI: 10.1016/j.nucmedbio.2006.10.002.Peer-Reviewed Original ResearchMeSH Keywords3',5'-Cyclic-AMP PhosphodiesterasesAnimalsBrainCarbon RadioisotopesCyclic AMPCyclic Nucleotide Phosphodiesterases, Type 1Cyclic Nucleotide Phosphodiesterases, Type 4HeartMaleMetabolic Clearance RateMyocardiumOrgan SpecificityPhosphodiesterase InhibitorsProtein BindingRadionuclide ImagingRadiopharmaceuticalsRatsRats, Sprague-DawleyRolipramSensitivity and SpecificityTissue DistributionConceptsPhosphodiesterase 4BAY 60Ro 20Male Sprague-Dawley ratsIntracellular cAMPSprague-Dawley ratsNeurohormonal modulationPeripheral tissuesAutoradiography studiesAdipose tissuePDE4 levelsTracer uptakeVivo findingsCAMP-mediated signalingBiodistribution studiesPDE4 activityRolipramSkeletal muscleCAMP levelsTracer retentionCardiac regionCilostazolMyocardiumZaprinastTissueOxidative DNA damage and DNA mismatch repair pathway play an important role in failing human myocardium
Lin R, Gao D, Gu Y, Bonde P, Fitton T, Hare J, Conte J, Williams G, Wei C. Oxidative DNA damage and DNA mismatch repair pathway play an important role in failing human myocardium. Journal Of Cardiothoracic-Renal Research 2006, 1: 41-49. DOI: 10.1016/j.jccr.2005.11.004.Peer-Reviewed Original ResearchApoptosis-related genesDNA damageRepair enzymesDNA mismatch repair pathwayImmunohistochemical stainingHuman myocardiumMismatch repair pathwayCaspase-3Donor subjectsDNA repair enzymeProtein levelsHearts of patientsDNA reconstructionRepair pathwaysOxidative DNA damageLevel of apoptosisCHF myocardiumCardiac transplantationCHF patientsBackgroundHeart failureMyocardial failureResultsThe levelsEpidemic proportionsImportant roleMyocardiumNoncompaction of the left ventricle in a patient with dextroversion
Friedman M, Wiseman S, Haramati L, Gordon G, Spevack D. Noncompaction of the left ventricle in a patient with dextroversion. European Heart Journal - Cardiovascular Imaging 2006, 8: 70-73. PMID: 16504589, DOI: 10.1016/j.euje.2005.12.011.Peer-Reviewed Case Reports and Technical Notes
2005
Regulation of endothelial Nitric Oxide Synthase (eNOS) activity in myocardium subjected to cardioplegic arrest
Fischer U, Klass O, Kanani G, Geissler H, Stock U, Fischer J, Bloch W, Mehlhorn U. Regulation of endothelial Nitric Oxide Synthase (eNOS) activity in myocardium subjected to cardioplegic arrest. The Thoracic And Cardiovascular Surgeon 2005, 53 DOI: 10.1055/s-2005-862061.Peer-Reviewed Original Research
2004
Functional Integration of Electrically Active Cardiac Derivatives From Genetically Engineered Human Embryonic Stem Cells With Quiescent Recipient Ventricular Cardiomyocytes
Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marbán E, Tomaselli GF, Li RA. Functional Integration of Electrically Active Cardiac Derivatives From Genetically Engineered Human Embryonic Stem Cells With Quiescent Recipient Ventricular Cardiomyocytes. Circulation 2004, 111: 11-20. PMID: 15611367, DOI: 10.1161/01.cir.0000151313.18547.a2.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAdrenergic beta-AgonistsAnimalsCell DifferentiationCell FusionCells, CulturedDefective VirusesElectrophysiologyFemaleGenes, ReporterGenetic VectorsGiant CellsGreen Fluorescent ProteinsGuinea PigsHeartHeart Conduction SystemHeart VentriclesHIV-1HumansIsoproterenolLidocaineMiceMyocardial ContractionMyocytes, CardiacOrgan Culture TechniquesPericardiumPluripotent Stem CellsPyrimidinesRatsTransduction, GeneticConceptsVentricular cardiomyocytesCardiac impulse generationBeta-adrenergic agonist isoproterenolGuinea pig heartsSite of injectionStem cellsHuman embryonic stem cellsCell-based therapiesContractile activityAgonist isoproterenolPharmacological agentsVentricular myocardiumLeft ventricleEx vivoDonor cardiomyocytesPig heartsHuman cardiomyocytesRecombinant lentivirusMembrane depolarizationCardiomyocytesFunctional syncytiumImpulse generationEmbryonic stem cellsMyocardiumEpicardial surfaceUsefulness of myocardial viability or ischemia in predicting long-term survival for patients with severe left ventricular dysfunction undergoing revascularization
Liao L, Cabell CH, Jollis JG, Velazquez EJ, Smith WT, Anstrom KJ, Pappas PA, Ryan T, Kisslo JA, Landolfo CK. Usefulness of myocardial viability or ischemia in predicting long-term survival for patients with severe left ventricular dysfunction undergoing revascularization. The American Journal Of Cardiology 2004, 93: 1275-1279. PMID: 15135703, DOI: 10.1016/j.amjcard.2004.01.071.Peer-Reviewed Original ResearchConceptsSevere left ventricular dysfunctionLeft ventricular dysfunctionVentricular dysfunctionDobutamine stress echocardiographySignificant survival advantageLong-term survivalCoronary diseaseStress echocardiographyViable myocardiumMyocardial viabilityPrognostic powerSurvival advantagePatientsRevascularizationDysfunctionEchocardiographyIschemiaMyocardiumDiseaseMonths
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply