2024
A Short Isoform of Tensin1 Is a Novel Regulator of F-Actin Assembly in Human Erythroblasts That Promotes Enucleation
Fowler V, Ghosh A, Coffin M, Diaz D, Schulz V, Gallagher P. A Short Isoform of Tensin1 Is a Novel Regulator of F-Actin Assembly in Human Erythroblasts That Promotes Enucleation. Blood 2024, 144: 535-535. DOI: 10.1182/blood-2024-210773.Peer-Reviewed Original ResearchRegulation of F-actin assemblyF-actin assemblyF-actinATAC-peaksH3K27 acetylationN-terminal actin-binding domainErythroid differentiationEnucleated cellsActin-binding domainActin-nucleating factorsF-actin cablesActin-binding proteinsTerminal differentiationActin filament polymerizationC-terminal SH2Translation start siteAssemble F-actinFocal adhesion formationDetect F-actinIncreased chromatin accessibilityErythroid terminal differentiationMolecular regulatory mechanismsSpectrin membrane skeletonMRNA translational start siteReduced F-actin
2021
Epor Stimulates Rapid Cycling and Larger Red Cells during Mouse and Human Erythropoiesis
Hidalgo D, Bejder J, Pop R, Gellatly K, Hwang Y, Scalf S, Eastman A, Chen J, Zhu L, Heuberger J, Guo S, Koury M, Nordsborg N, Socolovsky M. Epor Stimulates Rapid Cycling and Larger Red Cells during Mouse and Human Erythropoiesis. Blood 2021, 138: 852. DOI: 10.1182/blood-2021-154403.Peer-Reviewed Original ResearchErythroid terminal differentiationCell divisionCell cycleWild-type erythroblastsAnti-apoptotic protein BclCell sizeLive-cell reporterCell cycle speedNon-redundant functionsLarger red cellsFetal liver progenitorsTransferrin receptorEIF2α kinaseEpoR functionErythroblast survivalGenetic systemProtein BclHuman erythropoiesisNegative regulatorSurvival signalsTerminal differentiationEffects of EpoEpoRMouse EpoRP27 Kip1A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing anti-tumor immune response
Connolly KA, Kuchroo M, Venkat A, Khatun A, Wang J, William I, Hornick NI, Fitzgerald BL, Damo M, Kasmani MY, Cui C, Fagerberg E, Monroy I, Hutchins A, Cheung JF, Foster GG, Mariuzza DL, Nader M, Zhao H, Cui W, Krishnaswamy S, Joshi NS. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing anti-tumor immune response. Science Immunology 2021, 6: eabg7836. PMID: 34597124, PMCID: PMC8593910, DOI: 10.1126/sciimmunol.abg7836.Peer-Reviewed Original ResearchConceptsTumor-specific CD8T cellsTumor microenvironmentOngoing anti-tumor immune responseChronic lymphocytic choriomeningitis virus (LCMV) infectionTumor-draining lymph nodesAnti-tumor immune responseLymphocytic choriomeningitis virus infectionIntratumoral T cellsEfficacy of immunotherapyT cell responsesTumor-draining lymphAntitumor T cellsT cell terminal differentiationStem-like CD8Immunologic shiftGene expression signaturesLymph nodesTerminal differentiationLung tumorsVirus infectionLung adenocarcinomaImmune responseCD8Cell responses
2020
Murine interfollicular epidermal differentiation is gradualistic with GRHL3 controlling progression from stem to transition cell states
Lin Z, Jin S, Chen J, Li Z, Lin Z, Tang L, Nie Q, Andersen B. Murine interfollicular epidermal differentiation is gradualistic with GRHL3 controlling progression from stem to transition cell states. Nature Communications 2020, 11: 5434. PMID: 33116143, PMCID: PMC7595230, DOI: 10.1038/s41467-020-19234-6.Peer-Reviewed Original ResearchConceptsCell statesRNA velocity analysisSingle-cell RNA-seqTerminal differentiation genesStem cell stateInterfollicular epidermisStem cellsInterfollicular epidermal differentiationStem cell expansionDifferentiation genesRNA-seqCommitment pointTerminal differentiationGRHL3Epidermal differentiationCell expansionDifferentiationCellsTransition cellsWntGenesHomeostasisOncogenic Mechanisms and Therapeutic Targeting of Metabolism in Leukemia and Lymphoma
Stahl M, Epstein-Peterson Z, Intlekofer A. Oncogenic Mechanisms and Therapeutic Targeting of Metabolism in Leukemia and Lymphoma. Cold Spring Harbor Perspectives In Medicine 2020, 11: a035477. PMID: 32816875, PMCID: PMC8247556, DOI: 10.1101/cshperspect.a035477.Peer-Reviewed Original ResearchConceptsIncreased acquisition of nutrientsRegulate cell fateAcquisition of nutrientsMetabolically active cancer cellsBuffer oxidative stressActive cancer cellsUnrestrained cell growthAccelerated metabolic processesRapid cell divisionBiosynthetic reactionsPromote terminal differentiationCell fateCell biomassCell divisionReducing equivalentsCell growthMalignant cellsLymphoma cellsMetabolic processesTherapeutic vulnerabilitiesBiomass accumulationTerminal differentiationIntermediary metabolismLymphomaRedox balanceComprehensive proteomic analysis of murine terminal erythroid differentiation
Gautier EF, Leduc M, Ladli M, Schulz VP, Lefèvre C, Boussaid I, Fontenay M, Lacombe C, Verdier F, Guillonneau F, Hillyer CD, Mohandas N, Gallagher PG, Mayeux P. Comprehensive proteomic analysis of murine terminal erythroid differentiation. Blood Advances 2020, 4: 1464-1477. PMID: 32282884, PMCID: PMC7160260, DOI: 10.1182/bloodadvances.2020001652.Peer-Reviewed Original ResearchConceptsTerminal erythroid differentiationErythroid differentiationProteomic dataMurine terminal erythroid differentiationTerminal differentiationOverall cellular contentComprehensive proteomic dataComprehensive proteomic analysisMurine erythroid cellsTerminal differentiation processMost biologic processesProteome levelComparison of murineHuman proteomeProteomic analysisTranscriptomic changesChromatin condensationProteomeErythroid cellsFundamental mechanismsRed cell disordersDifferentiation processErythroid progenitorsFriend erythroleukemiaCellular model
2017
Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8+ T Cell Terminal Differentiation and Loss of Multipotency
Gray SM, Amezquita RA, Guan T, Kleinstein SH, Kaech SM. Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8+ T Cell Terminal Differentiation and Loss of Multipotency. Immunity 2017, 46: 596-608. PMID: 28410989, PMCID: PMC5457165, DOI: 10.1016/j.immuni.2017.03.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD8-Positive T-LymphocytesCell DifferentiationChromatinEnhancer of Zeste Homolog 2 ProteinFlow CytometryForkhead Box Protein O1Gene ExpressionHistonesImmunoblottingImmunologic MemoryLysineMethylationMice, Inbred C57BLMice, KnockoutMice, TransgenicModels, ImmunologicalMultipotent Stem CellsPolycomb Repressive Complex 2Reverse Transcriptase Polymerase Chain ReactionConceptsH3K27me3 depositionPolycomb repressive complex 2T cell terminal differentiationRepressive complex 2MP cellsLoss of multipotencyPro-survival genesCell terminal differentiationFate restrictionPermissive chromatinEpigenetic silencingMemory cell potentialDevelopmental plasticityCell developmentTerminal differentiationCell differentiationGenesPrecursor cellsFOXO1 expressionChromatinMemory precursor cellsMultipotencyCell maturationClonal expansionCells
2016
Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice
Mahoney C, Feliciano DM, Bordey A, Hartman NW. Switching on mTORC1 induces neurogenesis but not proliferation in neural stem cells of young mice. Neuroscience Letters 2016, 614: 112-118. PMID: 26812181, DOI: 10.1016/j.neulet.2015.12.042.Peer-Reviewed Original ResearchConceptsNeural stem cellsSubventricular zoneNeonatal subventricular zoneWeek old miceTuberous sclerosis complexStem cellsNewborn neuroblastsYoung miceOld miceProgressive lossYoung adultsRapamycin complex 1Mechanistic targetRecent evidenceProliferative cellsMiceHyperactive mTORC1Terminal differentiationCellsMTORC1 activationProliferationActivationMTORC1NeurogenesisHyperactivity
2015
The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection
Dominguez C, Amezquita R, Guan T, Marshall H, Joshi N, Kleinstein S, Kaech S. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. Journal Of Cell Biology 2015, 211: 2113oia258. DOI: 10.1083/jcb.2113oia258.Peer-Reviewed Original ResearchThe transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection
Dominguez CX, Amezquita RA, Guan T, Marshall HD, Joshi NS, Kleinstein SH, Kaech SM. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. Journal Of Experimental Medicine 2015, 212: 2041-2056. PMID: 26503446, PMCID: PMC4647261, DOI: 10.1084/jem.20150186.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD8-Positive T-LymphocytesCell DifferentiationCluster AnalysisFlow CytometryHomeodomain ProteinsHost-Pathogen InteractionsLectins, C-TypeLymphocytic ChoriomeningitisLymphocytic choriomeningitis virusMice, Inbred C57BLMice, KnockoutMice, TransgenicOligonucleotide Array Sequence AnalysisProtein BindingReceptors, ImmunologicRepressor ProteinsReverse Transcriptase Polymerase Chain ReactionT-Box Domain ProteinsT-Lymphocytes, CytotoxicTranscriptomeZinc Finger E-box Binding Homeobox 2ConceptsTerminal differentiationT cell terminal differentiationChromatin immunoprecipitation sequencingNovel genetic pathwaysTranscription factor ZEB2Cell terminal differentiationZeb2 functionImmunoprecipitation sequencingMemory cell potentialDifferentiation programGenetic pathwaysCytotoxic T lymphocyte differentiationTerminal effectorZEB2 mRNAPrecursor cellsCoordinated actionLymphocyte differentiationT lymphocyte differentiationMemory precursor cellsGenesT-betDifferentiationViral infectionZEB2CooperateHuman NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility
Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA, Drake AL, Kinuthia J, Montgomery RR, John-Stewart G, Holmes S, Blish CA. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Science Translational Medicine 2015, 7: 297ra115. PMID: 26203083, PMCID: PMC4547537, DOI: 10.1126/scitranslmed.aac5722.Peer-Reviewed Original ResearchConceptsAntiviral responseInnate natural killer (NK) cellsNK cell repertoire diversityHIV-1 acquisitionNatural killer cellsOutcome of infectionNK cellsWest Nile virusAntitumor responseKiller cellsCytokine productionInhibitory receptorsImmune historyImmune experienceHIV-1Repertoire diversityViral susceptibilityNile virusAfrican womenExposure riskFunctional consequencesTerminal differentiationRiskSingle-cell levelCellsCrystal Structure of Human Profilaggrin S100 Domain and Identification of Target Proteins Annexin II, Stratifin, and HSP27
Bunick CG, Presland RB, Lawrence OT, Pearton DJ, Milstone LM, Steitz TA. Crystal Structure of Human Profilaggrin S100 Domain and Identification of Target Proteins Annexin II, Stratifin, and HSP27. Journal Of Investigative Dermatology 2015, 135: 1801-1809. PMID: 25760235, PMCID: PMC4466033, DOI: 10.1038/jid.2015.102.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAnnexin A2Biomarkers, TumorCells, CulturedCrystallizationEpidermal CellsEpidermisExoribonucleasesFilaggrin ProteinsHSP27 Heat-Shock ProteinsHumansIntermediate Filament ProteinsKeratinocytesProtein BindingProtein TransportS100 ProteinsSensitivity and SpecificitySpectrometry, FluorescenceConceptsÅ resolution crystal structureProtein-protein interactionsHuman profilaggrinCalcium-binding domainKeratinocyte terminal differentiationMolecular functionsProtein interactionsTerminal domainShock protein 27Cell envelopeIdentification of targetsN-terminusMolecular approachesTerminal differentiationNormal epidermal barrierHydrophobic pocketSpecific functionsAnnexin IIStable dimerMolecular interfaceProtein 27Proteolytic productsProfilaggrinProteinCrystal structure
2013
Forward genetics identifies Kdf1/1810019J16Rik as an essential regulator of the proliferation–differentiation decision in epidermal progenitor cells
Lee S, Kong Y, Weatherbee SD. Forward genetics identifies Kdf1/1810019J16Rik as an essential regulator of the proliferation–differentiation decision in epidermal progenitor cells. Developmental Biology 2013, 383: 201-213. PMID: 24075906, PMCID: PMC3841015, DOI: 10.1016/j.ydbio.2013.09.022.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAllelesAnimalsBase SequenceCell DifferentiationCell ProliferationCleft PalateEmbryo LossEpidermisFemaleGene Expression Regulation, DevelopmentalGenes, RecessiveGenetic Complementation TestHeterozygoteKeratinocytesMaleMiceMice, Inbred C57BLMolecular Sequence DataPhenotypePhosphoproteinsPoint MutationProtein BindingProteinsRNA SplicingStem CellsTrans-ActivatorsConceptsEpidermal progenitor cellsEssential regulatorProgenitor cellsProliferation-differentiation balanceUnbiased genetic screenCell fate decisionsProliferation-differentiation decisionsCell proliferationUncontrolled cell proliferationFactor 1 geneProgenitor cell proliferationGenetic screenFate decisionsRepressive signalsTerminal fateInductive signalsPremature differentiationGenetic mechanismsInhibition of p63Terminal differentiationCell differentiationEpidermal cellsKDF1Rapid turnoverRate of proliferationBrg1 Determines Urothelial Cell Fate during Ureter Development
Weiss RM, Guo S, Shan A, Shi H, Romano RA, Sinha S, Cantley LG, Guo JK. Brg1 Determines Urothelial Cell Fate during Ureter Development. Journal Of The American Society Of Nephrology 2013, 24: 618-626. PMID: 23449535, PMCID: PMC3609140, DOI: 10.1681/asn.2012090902.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsUreter developmentBasal cell populationUreteral smooth muscle cellsHoxb7-CreTerminal differentiationPPARγ expressionUreteral epitheliumMuscle cellsUrothelial cellsP63 expressionRole of BRG1Basal cellsUmbrella cellsCell populationsSonic hedgehog expressionEpithelial stratificationAdult ureterUreterCell developmentBRG1 expressionSmooth muscle cell developmentShh expressionCellsHedgehog expression
2012
Quantitative modeling of the terminal differentiation of B cells and mechanisms of lymphomagenesis
Martínez M, Corradin A, Klein U, Álvarez M, Toffolo G, di Camillo B, Califano A, Stolovitzky G. Quantitative modeling of the terminal differentiation of B cells and mechanisms of lymphomagenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 2672-2677. PMID: 22308355, PMCID: PMC3289327, DOI: 10.1073/pnas.1113019109.Peer-Reviewed Original ResearchConceptsB-cell exitTranscriptional regulatory modulesTerminal differentiationTerminal differentiation of B cellsSelf-regulatory interactionsGene expression profiling dataMechanisms of lymphomagenesisExpression profiling dataMature human B cellsRegulatory modulesGene regulationT cell signalingB cellsCellular statesDifferentiation of B cellsHuman B cellsGerminal centersTumorigenic alterationsGenesQuantitative kinetic modelMemory B cellsAssociated with lymphomagenesisFeedback loopLymphomagenesisT cells
2010
Proliferative arrest of neural cells induces prion protein synthesis, nanotube formation, and cell‐to‐cell contacts
Miyazawa K, Emmerling K, Manuelidis L. Proliferative arrest of neural cells induces prion protein synthesis, nanotube formation, and cell‐to‐cell contacts. Journal Of Cellular Biochemistry 2010, 111: 239-247. PMID: 20518071, PMCID: PMC2930104, DOI: 10.1002/jcb.22723.Peer-Reviewed Original ResearchConceptsProliferative arrestTerminal differentiationCell division arrestT antigenStationary cellsNeuronal precursor cellsDivision arrestHost prion proteinKey developmental timesSV-40 T antigenAdherent junctionsDevelopmental timeProtein synthesisLiving cellsMRNA transcriptsPrion proteinNeural cellsPrecursor cellsCell contactGrowth conesDNA-synthesizing cellsCellsReduced serumNeuritic processesDifferentiation
2008
The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure
Maller Schulman BR, Liang X, Stahlhut C, DelConte C, Stefani G, Slack FJ. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure. Cell Cycle 2008, 7: 3935-3942. PMID: 19098426, PMCID: PMC2895810, DOI: 10.4161/cc.7.24.7397.Peer-Reviewed Original ResearchConceptsLin-41Neural tube closureTube closureTerminal differentiationPrecocious cell cycle exitNematode Caenorhabditis elegansMore complex organismsCell cycle exitKey developmental eventsMicroRNA target genesNeural tube closure defectsLet-7 microRNACaenorhabditis elegansEpidermal skin cellsEmbryonic lethalityCycle exitComplex organismsTarget genesLet-7Developmental eventsDisease genesMouse mutantsClosure defectsMutantsFunctional role
2007
Comparative Analysis of the Developmental Competence of Three Human Embryonic Stem Cell Lines in Vitro
Kim S, Kim B, Gil J, Kim S, Kim J. Comparative Analysis of the Developmental Competence of Three Human Embryonic Stem Cell Lines in Vitro. Molecules And Cells 2007, 23: 49-56. PMID: 17464211, DOI: 10.1016/s1016-8478(23)07388-0.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsHESC linesHuman embryonic stem cell linesEmbryonic stem cell linesPrimordial germ cellsDevelopmental potentialEmbryonic stem cellsEmbryonic germ layersEmbryoid body formationSpecific cell typesDevelopmental competenceStem cell linesCell replacement therapyExtraembryonic tissuesStem cell technologyGerm layersTerminal differentiationGerm cellsBody formationPluripotency markersCell typesNeuronal cellsTelomerase activityStem cellsHSF6
2006
Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells
Kim B, Kim S, Shim J, Woo D, Gil J, Kim S, Kim J. Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells. FEBS Letters 2006, 580: 5869-5874. PMID: 17027979, DOI: 10.1016/j.febslet.2006.09.053.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsVascular endothelial growth factorGerm layer formationEmbryonic stem cellsEmbryoid bodiesEndothelial growth factorNeurogenic effectsGrowth factorStem cellsEffects of VEGFNeuroectodermal genesVascular endothelial cellsHESC differentiationNeural rosettesDopaminergic neuronsGene expressionNeural progenitorsTerminal differentiationVEGF treatmentPotent mitogenEndothelial cellsNeuroectodermal differentiationDifferentiationCellsExpressionRole of calcium and other trace elements in the gastrointestinal physiology
Kirchhoff P, Geibel J. Role of calcium and other trace elements in the gastrointestinal physiology. World Journal Of Gastroenterology 2006, 12: 3229-3236. PMID: 16718844, PMCID: PMC4087967, DOI: 10.3748/wjg.v12.i20.3229.Peer-Reviewed Original ResearchConceptsCell type changesGastrointestinal tractTerrestrial organismsNutrient availabilityIntestinal epithelial cellsCellular behaviorTerminal differentiationExact functionEssential ionsAmino acidsNeuronal functionGastric acid secretionEpithelial cellsEntire gastrointestinal tractAllosteric modifierCaSR expressionRole of calciumElevated extracellularSecretory diarrheaAcid secretionCalcium handlingReceptorsNeoplastic diseaseGastrointestinal physiologyPhysiological effects
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply