2023
Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition
Saffer A, Baskin T, Verma A, Stanislas T, Oldenbourg R, Irish V. Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition. The Plant Journal 2023, 116: 855-870. PMID: 37548081, PMCID: PMC10592269, DOI: 10.1111/tpj.16414.Peer-Reviewed Original ResearchConceptsCell wallPlant cellsWild typeMost plant cellsPetal epidermal cellsDirect morphogenesisHelical bundlePetal cellsRemarkable diversityEpidermal cellsLarger macrofibrilsPectin compositionCell morphologyUniform handednessPolysaccharide componentsMorphogenesisMutantsConsistent chiralityHelical twistInteresting exceptionsRhamnogalacturonanCellsRight-handed helixEmergent propertiesPrimary determinant
2021
Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis
Park S, Matte-Martone C, Gonzalez DG, Lathrop EA, May DP, Pineda CM, Moore JL, Boucher JD, Marsh E, Schmitter-Sánchez A, Cockburn K, Markova O, Bellaïche Y, Greco V. Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nature Cell Biology 2021, 23: 476-484. PMID: 33958758, PMCID: PMC8603572, DOI: 10.1038/s41556-021-00670-5.Peer-Reviewed Original ResearchConceptsDendritic epidermal T cellsLangerhans cellsCell typesEpithelial cellsDifferent cell typesMultiple cell typesLive adult miceGTPase Rac1Skin-resident immune cellsNon-random spatial distributionDistribution of LCContinuous turnoverEpidermal cellsEpidermal T cellsIndividual cellsCellular mechanismsEnvironmental insultsHomeostasisBasal epithelial cellsImmune cellsT cellsAdult miceCellsProper architectureEpidermis
2018
Flavonol rhamnosylation indirectly modifies the cell wall defects of RHAMNOSE BIOSYNTHESIS1 mutants by altering rhamnose flux
Saffer AM, Irish VF. Flavonol rhamnosylation indirectly modifies the cell wall defects of RHAMNOSE BIOSYNTHESIS1 mutants by altering rhamnose flux. The Plant Journal 2018, 94: 649-660. PMID: 29505161, DOI: 10.1111/tpj.13885.Peer-Reviewed Original ResearchConceptsCell wallHyponastic cotyledonsRoot hair defectsEpidermal cellsCell wall defectCotyledon epidermal cellsShort root hairsCell wall polymersCotyledon phenotypeArabidopsis thalianaPetal phenotypeRhamnose synthaseRoot hairsFlavonol synthesisFlavonol glycosylationWall polymersDevelopmental defectsHair defectsMutantsBroader rolePectic polysaccharidesCotyledonsRhamnosylationPhenotypeDecreased levels
2017
Isolation of mutants with abnormal petal epidermal cell morphology
Saffer AM, Irish VF. Isolation of mutants with abnormal petal epidermal cell morphology. Plant Signaling & Behavior 2017, 12: e1382794. PMID: 29072548, PMCID: PMC5703263, DOI: 10.1080/15592324.2017.1382794.Peer-Reviewed Original ResearchConceptsPetal epidermal cellsEpidermal cellsUnbiased genetic screenEpidermal cell morphologyIsolation of mutantsCell morphologyDifferent cell typesCellular chiralityGenetic screenPollinator attractionCellular morphogenesisNovel cellular componentsCuticle synthesisPetal cellsCell shapeCellular componentsMutantsCell typesModel systemCell sizePlantsCellsParticular functionMorphogenesisConical expansionRhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation
Saffer AM, Carpita NC, Irish VF. Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Current Biology 2017, 27: 2248-2259.e4. PMID: 28736166, DOI: 10.1016/j.cub.2017.06.032.Peer-Reviewed Original ResearchConceptsCell wall polymersPlant growthWall polymersMicrotubule orientationPectic polysaccharide rhamnogalacturonanHelical growthMost plant organsEpidermal cell expansionCell wall compositionCortical microtubule arraysPetal epidermal cellsMutant rootsPlant cellsPlant speciesRhamnose synthasePlant organsWall compositionMicrotubule arraysEpidermal cellsCell expansionImportant functionsMutantsNovel sourceMutationsSpecific organs
2016
Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development
Perdigoto CN, Dauber KL, Bar C, Tsai PC, Valdes VJ, Cohen I, Santoriello FJ, Zhao D, Zheng D, Hsu YC, Ezhkova E. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development. PLOS Genetics 2016, 12: e1006151. PMID: 27414999, PMCID: PMC4944976, DOI: 10.1371/journal.pgen.1006151.Peer-Reviewed Original ResearchConceptsMerkel cell specificationCell specificationPrimary hair folliclesLoss of PolycombImportance of ShhCell differentiation programHair follicle functionSonic hedgehog (Shh) signalingPRC2 targetsSpecialized keratinocytesEpidermal progenitorsDevelopmental programHair folliclesEpigenetic processesDifferentiation programHedgehog signalingShh ligandMature Merkel cellsShh signalingSkin developmentMurine dorsal skinEpidermal cellsMerkel cellsPRC2 lossCell formation
2014
Single-Cell Analysis Reveals Functionally Distinct Classes within the Planarian Stem Cell Compartment
van Wolfswinkel JC, Wagner DE, Reddien PW. Single-Cell Analysis Reveals Functionally Distinct Classes within the Planarian Stem Cell Compartment. Cell Stem Cell 2014, 15: 326-339. PMID: 25017721, PMCID: PMC4171737, DOI: 10.1016/j.stem.2014.06.007.Peer-Reviewed Original ResearchConceptsSingle-cell transcriptional profilingDistinct cellular compartmentsGene expression fingerprintPluripotent stem cellsStem cell compartmentProliferative cell populationDistinct classesTranscriptional profilingCellular compartmentsPlanarian neoblastsExpression fingerprintsBroad lineagesEpidermal cellsNeoblastsStem cellsCell compartmentLineagesCell populationsCell analysisCellsCompartmentsPlanariansFlatwormsRegenerationHomeostasis
2013
Forward genetics identifies Kdf1/1810019J16Rik as an essential regulator of the proliferation–differentiation decision in epidermal progenitor cells
Lee S, Kong Y, Weatherbee SD. Forward genetics identifies Kdf1/1810019J16Rik as an essential regulator of the proliferation–differentiation decision in epidermal progenitor cells. Developmental Biology 2013, 383: 201-213. PMID: 24075906, PMCID: PMC3841015, DOI: 10.1016/j.ydbio.2013.09.022.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAllelesAnimalsBase SequenceCell DifferentiationCell ProliferationCleft PalateEmbryo LossEpidermisFemaleGene Expression Regulation, DevelopmentalGenes, RecessiveGenetic Complementation TestHeterozygoteKeratinocytesMaleMiceMice, Inbred C57BLMolecular Sequence DataPhenotypePhosphoproteinsPoint MutationProtein BindingProteinsRNA SplicingStem CellsTrans-ActivatorsConceptsEpidermal progenitor cellsEssential regulatorProgenitor cellsProliferation-differentiation balanceUnbiased genetic screenCell fate decisionsProliferation-differentiation decisionsCell proliferationUncontrolled cell proliferationFactor 1 geneProgenitor cell proliferationGenetic screenFate decisionsRepressive signalsTerminal fateInductive signalsPremature differentiationGenetic mechanismsInhibition of p63Terminal differentiationCell differentiationEpidermal cellsKDF1Rapid turnoverRate of proliferationSynapse Location during Growth Depends on Glia Location
Shao Z, Watanabe S, Christensen R, Jorgensen EM, Colón-Ramos DA. Synapse Location during Growth Depends on Glia Location. Cell 2013, 154: 337-350. PMID: 23870123, PMCID: PMC3808971, DOI: 10.1016/j.cell.2013.06.028.Peer-Reviewed Original Research
2012
Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation
Sumigray KD, Foote HP, Lechler T. Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation. Journal Of Cell Biology 2012, 199: 513-525. PMID: 23091070, PMCID: PMC3483132, DOI: 10.1083/jcb.201206143.Peer-Reviewed Original ResearchConceptsReorganization of microtubulesAdherens junctionsNoncentrosomal microtubulesCortical microtubulesCell adhesionCell-cell junctionsMyosin II recruitmentType II myosinMost cell typesDisruption of microtubulesMicrotubule cytoskeletonCell cortexEpidermal cell adhesionMyosin IITight junction functionMyosin IIAEpidermal cellsPhysiological roleBarrier activityCell typesMicrotubulesJunction functionDifferentiating epidermisChemical barrierCell sheets
2002
Dcas Is Required for importin-α3 Nuclear Export and Mechano-Sensory Organ Cell Fate Specification in Drosophila
Tekotte H, Berdnik D, Török T, Buszczak M, Jones LM, Cooley L, Knoblich JA, Davis I. Dcas Is Required for importin-α3 Nuclear Export and Mechano-Sensory Organ Cell Fate Specification in Drosophila. Developmental Biology 2002, 244: 396-406. PMID: 11944946, DOI: 10.1006/dbio.2002.0612.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell Nucleusalpha KaryopherinsAnimalsApoptosisCellular Apoptosis Susceptibility ProteinDNA HelicasesDrosophila melanogasterDrosophila ProteinsEmbryo, NonmammalianGene Expression Regulation, DevelopmentalIn Situ HybridizationMechanoreceptorsMorphogenesisPhylogenyRNA, MessengerSense OrgansConceptsNuclear exportEmbryonic central nervous systemNuclear protein importCell fate specificationSpecific developmental phenotypesHuman genetic disordersProtein importDrosophila orthologImportin alphaFate specificationExport receptorCell identityDevelopmental phenotypesHypomorphic alleleEmbryonic cellsVivo functionNotch pathwayTissue specificityCytoplasmic distributionEpidermal cellsDifferent tissuesCharacteristics of mutationsGenetic disordersMutationsPhenotype
1995
Expression cloning of the epithelial sodium channel
Canessa C, Horisberger J, Schild L, Rossier B. Expression cloning of the epithelial sodium channel. Kidney International 1995, 48: 950-955. PMID: 8569104, DOI: 10.1038/ki.1995.376.Peer-Reviewed Original Research
1991
Adhesion Molecules CD11a, CD18, and ICAM-1 on Human Epidermal Langerhans Cells Serve a Functional Role in the Activation of Alloreactive T Cells
Simon J, Cruz P, Tigelaar R, Sontheimer R, Bergstresser P. Adhesion Molecules CD11a, CD18, and ICAM-1 on Human Epidermal Langerhans Cells Serve a Functional Role in the Activation of Alloreactive T Cells. Journal Of Investigative Dermatology 1991, 96: 148-151. PMID: 1670950, DOI: 10.1111/1523-1747.ep12515946.Peer-Reviewed Original ResearchConceptsPeripheral blood mononuclear leukocytesAdhesion molecules CD11aAlloreactive T cellsAntigen-presenting cellsLangerhans cellsT cellsICAM-1T cell activationAdhesion moleculesAccessory signalsAllogeneic peripheral blood mononuclear leukocytesHuman epidermal Langerhans cellsBlood mononuclear leukocytesEpidermal Langerhans cellsEpidermal cellsAdhesion molecule expressionTwo-color immunofluorescenceDependent T-cell activationRelevant adhesion moleculesEfficient T cell activationAllostimulatory capacityHuman epidermal cellsLC stimulationMolecule expressionMononuclear leukocytes
1989
Limited diversity of T-cell receptor gamma-chain expression of murine Thy-1+ dendritic epidermal cells revealed by V gamma 3-specific monoclonal antibody.
Havran W, Grell S, Duwe G, Kimura J, Wilson A, Kruisbeek A, O'Brien R, Born W, Tigelaar R, Allison J. Limited diversity of T-cell receptor gamma-chain expression of murine Thy-1+ dendritic epidermal cells revealed by V gamma 3-specific monoclonal antibody. Proceedings Of The National Academy Of Sciences Of The United States Of America 1989, 86: 4185-4189. PMID: 2726770, PMCID: PMC287415, DOI: 10.1073/pnas.86.11.4185.Peer-Reviewed Original Research
1988
Thy-1+ epidermal cells in nude mice are distinct from their counterparts in thymus-bearing mice. A study of morphology, function, and T cell receptor expression.
Nixon-Fulton J, Kuziel W, Santerse B, Bergstresser P, Tucker P, Tigelaar R. Thy-1+ epidermal cells in nude mice are distinct from their counterparts in thymus-bearing mice. A study of morphology, function, and T cell receptor expression. The Journal Of Immunology 1988, 141: 1897-903. PMID: 2902136, DOI: 10.4049/jimmunol.141.6.1897.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, SurfaceBlotting, NorthernBlotting, SouthernCell DivisionConcanavalin ADendritic CellsEpidermal CellsEpidermisEthersFemaleInterleukin-2IonomycinMaleMiceMice, Inbred BALB CMice, Inbred CBAMice, NudeReceptors, Antigen, T-CellSpecies SpecificityTetradecanoylphorbol AcetateThy-1 AntigensThymus GlandConceptsIL-2Thy-1Nude miceNormal miceLow-dose IL-2BALB/c miceT cell receptor expressionModest proliferative responseThymus-bearing miceCell receptor expressionT cell differentiationTCR-gamma transcriptsC miceReceptor expressionAthymic miceProliferative responseNormal animalsTCR mRNACalcium ionophoreEpidermal cellsMiceNormal CBACon AFollicular epitheliumPopulation of cellsThy-1+ Dendritic Epidermal Cells in Mice: Precursor Frequency Analysis and Cloning of Concanavalin A-Reactive Cells
Takashima A, Nixon-Fulton J, Bergstresser P, Tigelaar R. Thy-1+ Dendritic Epidermal Cells in Mice: Precursor Frequency Analysis and Cloning of Concanavalin A-Reactive Cells. Journal Of Investigative Dermatology 1988, 90: 671-678. PMID: 2896217, DOI: 10.1111/1523-1747.ep12560835.Peer-Reviewed Original ResearchConceptsDendritic epidermal cellsPrecursor frequency analysisIL-2Lyt-2Thy-1Con AGrowth factorExogenous IL-2Higher proliferative responsesFunctional activityCytotoxic activityYAC-1Precursor frequencyProliferative responseMouse Thy-1Dilution microculturesLow cytotoxic activityHigh cytotoxic activityTarget cellsLow responsivenessCells/Vivo activityBulk culturesFiller cellsEpidermal cells
1987
Delta is the Cx-gene product in the γ/δ antigen receptor of dendritic epidermal cells
Bonyhadi M, Weiss A, Tucker P, Tigelaar R, Allison J. Delta is the Cx-gene product in the γ/δ antigen receptor of dendritic epidermal cells. Nature 1987, 330: 574-576. PMID: 3500417, DOI: 10.1038/330574a0.Peer-Reviewed Original ResearchConceptsDendritic epidermal cellsDisulfide-linked heterodimerEpidermal cellsΔ chainsThy-1Constant region genesAntigen receptorNorthern blot analysisΓ-chainRelative molecular mass MrCx genesMost T cellsMurine Thy-1Dimeric receptorMessenger RNAGene segmentsEndoglycosidase treatmentT cellsBlot analysisCell linesOligosaccharide residuesRegulation of T-cell receptor γ-chain RNA expression in murine Thy-1+ dendritic epidermal cells
Kuziel W, Takashima A, Bonyhadi M, Bergstresser P, Allison J, Tigelaar R, Tucker P. Regulation of T-cell receptor γ-chain RNA expression in murine Thy-1+ dendritic epidermal cells. Nature 1987, 328: 263-266. PMID: 2885757, DOI: 10.1038/328263a0.Peer-Reviewed Original ResearchConceptsEpidermal cellsT cell receptorDendritic epidermal cellsThy-1Steady-state levelsMurine Thy-1T lymphocytesCell differentiationT-cell lineageT cell differentiationDistinct populationsMost T lymphocytesRNA expressionMajor histocompatibility complexΔ complexNecessary eventΑ-chainΓ-chainMinor populationDendritic cellsLangerhans cellsExpressionCellsNormal miceHistocompatibility complexLack of dendritic Thy-1+ epidermal cells in mice with severe combined immunodeficiency disease.
Nixon-Fulton J, Witte P, Tigelaar R, Bergstresser P, Kumar V. Lack of dendritic Thy-1+ epidermal cells in mice with severe combined immunodeficiency disease. The Journal Of Immunology 1987, 138: 2902-5. PMID: 2883236, DOI: 10.4049/jimmunol.138.9.2902.Peer-Reviewed Original ResearchConceptsDendritic Thy-1SCID miceEpidermal cell suspensionsThy-1NK cellsT lymphocytesEpidermal whole mountsSevere combined immunodeficiency diseaseCombined immunodeficiency diseaseNormal bone marrowControl miceImmunodeficiency diseaseBone marrowWhole mountsMiceImmunofluorescent stainingCon ACell suspensionsEC suspensionsEpidermal cellsLymphocytesPrecursor levelsCellsTransplantationMarrow
1986
Phorbol Ester Serves As a Coepibolin in the Spreading of Primary Guinea Pig Epidermal Cells
Stenn K, Core N, Halaban R. Phorbol Ester Serves As a Coepibolin in the Spreading of Primary Guinea Pig Epidermal Cells. Journal Of Investigative Dermatology 1986, 87: 754-757. PMID: 2431072, DOI: 10.1111/1523-1747.ep12456946.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply