2024
PilY1 regulates the dynamic architecture of the type IV pilus machine in Pseudomonas aeruginosa
Guo S, Chang Y, Brun Y, Howell P, Burrows L, Liu J. PilY1 regulates the dynamic architecture of the type IV pilus machine in Pseudomonas aeruginosa. Nature Communications 2024, 15: 9382. PMID: 39477930, PMCID: PMC11525922, DOI: 10.1038/s41467-024-53638-y.Peer-Reviewed Original ResearchConceptsPilus extensionCell envelopeType IV piliPathogen Pseudomonas aeruginosaBacterial cell envelopeP. aeruginosa cellsCryo-electron tomographyPilus dynamicsPilin subunitSecretin channelSurface motilityPriming complexOuter membraneBiofilm formationT4PPilY1P. aeruginosaPseudomonas aeruginosaCentral poreMolecular mechanismsSubtomogram averagingPotential therapeutic targetDynamic assemblyTherapeutic targetMolecular framework
2023
Transcriptome Analysis of Escherichia coli Dormant Cystlike Cells
Nikolaev Y, Loiko N, Galuza O, Mardanov A, Beletskii A, Deryabin D, Demkina E, El’-Registan G. Transcriptome Analysis of Escherichia coli Dormant Cystlike Cells. Microbiology 2023, 92: 775-791. DOI: 10.1134/s0026261723602233.Peer-Reviewed Original ResearchDormant cellsHeterogeneity of bacterial populationsE. coli populationsActive genesGene readsCell envelopeGenome activationBiofilm formationBacterial populationsGrowing cellsStress adaptationSixty genesGenesDifferential expressionCell heterogeneityRNA contentMRNA amountsCell proliferationPresence of mRNACell populationsCellsGenomeTranscriptomeTranscriptionRNA
2021
A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa
Lin CK, Lee DSW, McKeithen-Mead S, Emonet T, Kazmierczak B. A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa. MBio 2021, 12: 10.1128/mbio.00831-21. PMID: 34154400, PMCID: PMC8262847, DOI: 10.1128/mbio.00831-21.Peer-Reviewed Original ResearchConceptsType 3 secretion systemSecretion systemT3SS expressionVirulence traitsSpecific virulence traitsHuman disease severityComplex nanomachinesT3SS genesP. aeruginosa cellsReproductive fitnessIsogenic cellsHeterogeneous expressionCell envelopeT3SS effectorsMotility organellesReservoir of cellsCritical virulence traitsGene expressionRegulatory mechanismsSubpopulation of cellsGram-negative pathogensFluorescent reportersDivision timeP. aeruginosaPseudomonas aeruginosaThe peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete
Davis MM, Brock AM, DeHart TG, Boribong BP, Lee K, McClune ME, Chang Y, Cramer N, Liu J, Jones CN, Jutras BL. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete. PLOS Pathogens 2021, 17: e1009546. PMID: 33984073, PMCID: PMC8118282, DOI: 10.1371/journal.ppat.1009546.Peer-Reviewed Original ResearchConceptsPeptidoglycan-associated proteinsCell envelopeUnbiased proteomic approachCryo-electron microscopyOxidative stress responseOuter membrane vesiclesGram-negative bacteriaDps homologueEnvelope integrityProteomic approachNapA mutantOuter membraneBacterial proteinsMutant bacteriaDNA bindingCritical residuesBiological functionsLyme disease spirocheteStress responseCellular DNAMembrane vesiclesPeptidoglycanEnvelope layersBacterial pathogensCellular studies
2020
A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa
Rundell EA, Commodore N, Goodman AL, Kazmierczak BI. A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa. Journal Of Bacteriology 2020, 202: 10.1128/jb.00682-19. PMID: 31871033, PMCID: PMC7043666, DOI: 10.1128/jb.00682-19.Peer-Reviewed Original ResearchConceptsFlagellar assemblyFitness advantageFitness costsCell envelopeOuter membrane barrier functionOuter membrane biogenesisUnbiased high-throughput approachOuter membrane barrierMembrane barrier functionHigh-throughput approachMembrane biogenesisGram-negative bacteriaFlagellar functionInsertion sequencingOuter membraneGene productsPresence of linezolidPresence of antibioticsAntibiotic resistance determinantsMembrane barrierAntibiotic entryFitnessEfflux pumpsGlycopeptide antibiotic vancomycinGenes
2019
Loss of a Cardiolipin Synthase in Helicobacter pylori G27 Blocks Flagellum Assembly
Chu JK, Zhu S, Herrera CM, Henderson JC, Liu J, Trent MS, Hoover TR. Loss of a Cardiolipin Synthase in Helicobacter pylori G27 Blocks Flagellum Assembly. Journal Of Bacteriology 2019, 201: 10.1128/jb.00372-19. PMID: 31427391, PMCID: PMC6779456, DOI: 10.1128/jb.00372-19.Peer-Reviewed Original ResearchConceptsFlagellum assemblyFlagellum biosynthesisCardiolipin synthaseFlagellar protein export apparatusCardiolipin levelsProtein export apparatusCryo-electron tomographyWild-type levelsAllelic exchange mutagenesisMS ringFlagellar genesExport apparatusCell polesP ringHost colonizationMature flagellumCell envelopeGenomic DNAMutantsProximal rodFlagellaBiosynthesisSequencing analysisFlgIBacterial pathogensStructural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography
Wang C, Tu J, Liu J, Molineux IJ. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nature Microbiology 2019, 4: 1049-1056. PMID: 30886360, PMCID: PMC6533119, DOI: 10.1038/s41564-019-0403-z.Peer-Reviewed Original ResearchConceptsCryo-electron tomographyOuter membraneInfection initiationCell surfaceBacterial cell envelopeSalmonella enterica serovar TyphimuriumGenome translocationGram-negative bacteriaEnterica serovar TyphimuriumTail needleCytoplasmic membraneSecond proteinExtracellular channelsCell envelopePhage P22Successful infectionCell cytoplasmSerovar TyphimuriumSuch virionsGenomeCytoplasmProteinO-antigenPhagesAssembles
2018
Multisystem Analysis of Mycobacterium tuberculosis Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface
Carette X, Platig J, Young D, Helmel M, Young A, Wang Z, Potluri L, Moody C, Zeng J, Prisic S, Paulson J, Muntel J, Madduri A, Velarde J, Mayfield J, Locher C, Wang T, Quackenbush J, Rhee K, Moody D, Steen H, Husson R. Multisystem Analysis of Mycobacterium tuberculosis Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface. MBio 2018, 9: 10.1128/mbio.02333-17. PMID: 29511081, PMCID: PMC5845002, DOI: 10.1128/mbio.02333-17.Peer-Reviewed Original ResearchConceptsMycobacterial cell envelopeCell envelopePeptidoglycan turnoverProtein abundanceResponse regulator MtrAProtein secretion systemStress responseEnvelope stress responsePhosphorylated cellular proteinsRegulate essential processesDifferentially phosphorylated proteinsSerine/threonine protein kinaseTransport of proteinsLevel of gene expressionAnalysis of phosphoproteinsEssential cell functionsLevel of phosphorylationDNA binding activityDecreased expression of genesCell wall lipidsExpression of genesLipid contentIncreasing multidrug resistanceSecretion systemVirulence determinants
2017
Structural basis of MsbA-mediated lipopolysaccharide transport
Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 2017, 549: 233-237. PMID: 28869968, PMCID: PMC5759761, DOI: 10.1038/nature23649.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateATP-Binding Cassette TransportersBacterial ProteinsBiological TransportCell MembraneCryoelectron MicroscopyEscherichia coliHydrophobic and Hydrophilic InteractionsLipid BilayersLipopolysaccharidesModels, MolecularNanostructuresPeriplasmProtein BindingProtein DomainsConceptsPeriplasmic leafletStructural basisSingle-particle cryo-electron microscopyCryo-electron microscopyÅ resolution structureLipid flippasesGram-negative bacteriaLipopolysaccharide transportTransmembrane domainInner membraneCytoplasmic leafletMsbAOuter membraneCell envelopeResolution structureCassette transportersADP-vanadateStructural mechanismsConformational transitionLPS recognitionFunctional stateFlippasesMsbA.Hydrophobic interactionsMembraneInteraction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly
Jain R, Sliusarenko O, Kazmierczak BI. Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly. PLOS Pathogens 2017, 13: e1006594. PMID: 28854278, PMCID: PMC5595344, DOI: 10.1371/journal.ppat.1006594.Peer-Reviewed Original ResearchMeSH KeywordsBacterial ProteinsCarrier ProteinsChromatography, GelCyclic GMPFimbriae, BacterialImage Processing, Computer-AssistedIntracellular Signaling Peptides and ProteinsMicroscopy, Electron, TransmissionOxidoreductasesPolymerase Chain ReactionPseudomonas aeruginosaSurface Plasmon ResonanceVirulenceVirulence FactorsConceptsT4P assemblyAssembly ATPaseTwitching motilityPoint mutant alleleBacterial cell envelopeType IVa piliGMP receptorPilus assemblyBacterial surface structuresCell envelopeFimXLocalization patternsMutant allelesSecond messengerPilBBiofilm formationATPase activityDirectional movementIntracellular levelsPilTT4PATPaseBacteriaMotilityAssembly
2016
Imaging the Motility and Chemotaxis Machineries in Helicobacter pylori by Cryo-Electron Tomography
Qin Z, Lin WT, Zhu S, Franco AT, Liu J. Imaging the Motility and Chemotaxis Machineries in Helicobacter pylori by Cryo-Electron Tomography. Journal Of Bacteriology 2016, 199: 10.1128/jb.00695-16. PMID: 27849173, PMCID: PMC5237115, DOI: 10.1128/jb.00695-16.Peer-Reviewed Original ResearchCryo-electron tomographyChemotaxis arraysUnipolar flagellaBacterial pathogensFlagella-driven motilityMultiple unipolar flagellaNovel structural insightsFlagellar assemblyChemotaxis machineryFlagellar poleAssembly intermediatesFlagellar rotationFlagellar motorCell envelopeStructural insightsMembrane sheathSheathed flagellumMolecular mechanismsUnique motilityH. pylori cellsFlagellaSitu structureHigh-viscosity environmentsPylori cellsMotilityBiogenesis of the Gram-positive bacterial cell envelope
Siegel S, Liu J, Ton-That H. Biogenesis of the Gram-positive bacterial cell envelope. Current Opinion In Microbiology 2016, 34: 31-37. PMID: 27497053, PMCID: PMC5164837, DOI: 10.1016/j.mib.2016.07.015.Peer-Reviewed Original ResearchConceptsWall teichoic acidGram-positive cell envelopeCell envelopeLipoteichoic acidLytR-CpsA-Psr family proteinsPhylum of Gram-positive bacteriaSortase-assembled piliCell envelope biogenesisBacterial cell envelopeGram-negative counterpartsGram-positive bacterial cell envelopeGram-positive bacteriaEnvelope biogenesisFamily proteinsTeichoic acidGram-negative organismsSurface displaySurface proteinsFolding mechanismOxidized proteinsGram-positiveCapsular polysaccharideDivergent functionsPiliBiogenesis
2015
Crystal Structure of Human Profilaggrin S100 Domain and Identification of Target Proteins Annexin II, Stratifin, and HSP27
Bunick CG, Presland RB, Lawrence OT, Pearton DJ, Milstone LM, Steitz TA. Crystal Structure of Human Profilaggrin S100 Domain and Identification of Target Proteins Annexin II, Stratifin, and HSP27. Journal Of Investigative Dermatology 2015, 135: 1801-1809. PMID: 25760235, PMCID: PMC4466033, DOI: 10.1038/jid.2015.102.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAnnexin A2Biomarkers, TumorCells, CulturedCrystallizationEpidermal CellsEpidermisExoribonucleasesFilaggrin ProteinsHSP27 Heat-Shock ProteinsHumansIntermediate Filament ProteinsKeratinocytesProtein BindingProtein TransportS100 ProteinsSensitivity and SpecificitySpectrometry, FluorescenceConceptsÅ resolution crystal structureProtein-protein interactionsHuman profilaggrinCalcium-binding domainKeratinocyte terminal differentiationMolecular functionsProtein interactionsTerminal domainShock protein 27Cell envelopeIdentification of targetsN-terminusMolecular approachesTerminal differentiationNormal epidermal barrierHydrophobic pocketSpecific functionsAnnexin IIStable dimerMolecular interfaceProtein 27Proteolytic productsProfilaggrinProteinCrystal structure
2009
Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis
Perez JC, Shin D, Zwir I, Latifi T, Hadley TJ, Groisman EA. Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis. PLOS Genetics 2009, 5: e1000428. PMID: 19300486, PMCID: PMC2650801, DOI: 10.1371/journal.pgen.1000428.Peer-Reviewed Original ResearchConceptsRegulatory proteinsSpecies-specific traitsHorizontal gene transferDifferent gene setsSpecies-specific targetsPhoP proteinTranscriptional rewiringPhoP regulonRelated organismsPhoPQ operonGene setsVariable membersCell envelopeProtein activityRegulonBacterial speciesGene transferSpeciesProteinPhoPFamily EnterobacteriaceaeGenesVirulenceHomeostasisWidespread effects
2006
The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O‐antigen chain length determinant
Delgado MA, Mouslim C, Groisman EA. The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O‐antigen chain length determinant. Molecular Microbiology 2006, 60: 39-50. PMID: 16556219, DOI: 10.1111/j.1365-2958.2006.05069.x.Peer-Reviewed Original ResearchConceptsPmrA/PmrBO-antigen subunitSame start siteHydrophobic lipid ASDS/PAGE gelsChain length determinantTwo-component systemSalmonella enterica serovar TyphimuriumO-antigenGram-negative bacteriaNull mutantsEnterica serovar TyphimuriumStart siteRcsB mutantDifferent environmental conditionsCell envelopeRegulatory proteinsLPS genesOutermost componentCore oligosaccharideSerovar TyphimuriumGenesEnvironmental conditionsPAGE gelsRcsB
1994
pIV, a Filamentous Phage Protein that Mediates Phage Export Across the Bacterial Cell Envelope, Forms a Multimer
Kazmierczak B, Mielke D, Russel M, Model P. pIV, a Filamentous Phage Protein that Mediates Phage Export Across the Bacterial Cell Envelope, Forms a Multimer. Journal Of Molecular Biology 1994, 238: 187-198. PMID: 8158648, DOI: 10.1006/jmbi.1994.1280.Peer-Reviewed Original ResearchConceptsSpecific substrate proteinsBacterial cell envelopeOuter membrane proteinsBacterial homologSubstrate proteinsMixed multimersPhage assemblyMembrane proteinsPhage proteinsOuter membraneCell envelopeHomologous proteinsExtracellular milieuProtein secretionEscherichia coliFilamentous phageGated channelProteinSame cellsSpecialized formMultimersPhagesHomologSedimentation experimentsSpheroplasts
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply