2022
KCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling
Ando K, Tong L, Peng D, Vázquez-Liébanas E, Chiyoda H, He L, Liu J, Kawakami K, Mochizuki N, Fukuhara S, Grutzendler J, Betsholtz C. KCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling. Developmental Cell 2022, 57: 1383-1399.e7. PMID: 35588738, DOI: 10.1016/j.devcel.2022.04.019.Peer-Reviewed Original ResearchConceptsK-ATP channel functionVascular smooth muscle cell differentiationChannel functionSmooth muscle cell differentiationMuscle cell differentiationVascular smooth muscle developmentSmooth muscle developmentVSMC developmentHuman central nervous system disordersMuscle developmentVSMC differentiationCentral nervous system disordersCell differentiationChemical inhibitionVoltage-dependent calcium channelsATP-sensitive potassium channelsFunction mutationsCell progenitorsK-ATP channelsCerebral blood flowCell culture modelMolecular causesNervous system disordersIntracellular CaVasoconstrictive capacity
2020
Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation
Zeng Z, Xia L, Fan S, Zheng J, Qin J, Fan X, Liu Y, Tao J, Liu Y, Li K, Ling Z, Bu Y, Martin KA, Hwa J, Liu R, Tang WH. Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation. Circulation 2020, 143: 354-371. PMID: 33207953, DOI: 10.1161/circulationaha.120.049715.Peer-Reviewed Original ResearchConceptsHuman coronary artery smooth muscle cellsTet2 knockout miceCoronary artery smooth muscle cellsArtery smooth muscle cellsCircular RNAsSmooth muscle cellsVascular smooth muscle cellsWire-injured mouse femoral arteriesSmooth muscle cell differentiationCircular RNA profilingMuscle cell differentiationRNA sequencing dataLoss of TET2Coronary heart diseaseVascular SMC differentiationMiR-22-3pPlatelet-derived growth factorKnockout miceSMC differentiationMaster regulatorRNA sequencingRNA profilingPlatelet-derived growth factor-BBGene expressionSequencing data
2018
TCF7L2 (Transcription Factor 7-Like 2) Regulation of GATA6 (GATA-Binding Protein 6)-Dependent and -Independent Vascular Smooth Muscle Cell Plasticity and Intimal Hyperplasia
Srivastava R, Rolyan H, Xie Y, Li N, Bhat N, Hong L, Esteghamat F, Adeniran A, Geirsson A, Zhang J, Ge G, Nobrega M, Martin KA, Mani A. TCF7L2 (Transcription Factor 7-Like 2) Regulation of GATA6 (GATA-Binding Protein 6)-Dependent and -Independent Vascular Smooth Muscle Cell Plasticity and Intimal Hyperplasia. Arteriosclerosis Thrombosis And Vascular Biology 2018, 39: 250-262. PMID: 30567484, PMCID: PMC6365015, DOI: 10.1161/atvbaha.118.311830.Peer-Reviewed Original ResearchConceptsInjury-induced intimal hyperplasiaIntimal hyperplasiaObstructive coronary artery diseaseVascular smooth muscle cell dedifferentiationSmooth muscle cell dedifferentiationVascular Smooth Muscle Cell PlasticityLRP6 mutant miceOverexpression of TCF7L2Coronary artery diseaseVascular smooth muscle cellsMultiple mouse modelsMuscle cell dedifferentiationWild-type littermatesSmooth muscle cellsRole of TCF7L2Smooth Muscle Cell PlasticityVascular smooth muscle cell differentiationMuscle cell plasticitySmooth muscle cell differentiationArtery diseaseSM-MHCMouse modelCell cycle inhibitorsHaploinsufficient miceHyperplasia
2017
Opposing Actions of AKT (Protein Kinase B) Isoforms in Vascular Smooth Muscle Injury and Therapeutic Response
Jin Y, Xie Y, Ostriker AC, Zhang X, Liu R, Lee MY, Leslie KL, Tang W, Du J, Lee SH, Wang Y, Sessa WC, Hwa J, Yu J, Martin KA. Opposing Actions of AKT (Protein Kinase B) Isoforms in Vascular Smooth Muscle Injury and Therapeutic Response. Arteriosclerosis Thrombosis And Vascular Biology 2017, 37: 2311-2321. PMID: 29025710, PMCID: PMC5699966, DOI: 10.1161/atvbaha.117.310053.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesCell Cycle ProteinsCell DifferentiationCell MovementCell ProliferationCells, CulturedDisease Models, AnimalForkhead Transcription FactorsGene Expression RegulationGenetic Predisposition to DiseaseHumansMice, KnockoutMuscle, Smooth, VascularMyocytes, Smooth MuscleNeointimaNuclear ProteinsPhenotypePromoter Regions, GeneticProto-Oncogene Proteins c-aktRNA InterferenceRNA, MessengerSignal TransductionSirolimusTime FactorsTrans-ActivatorsTranscription FactorsTransfectionVascular System InjuriesConceptsIntimal hyperplasiaTherapeutic inhibitionVascular smooth muscle injurySmooth muscle-specific deletionSmooth muscle cell proliferationSystemic vascular diseaseSevere intimal hyperplasiaSmooth muscle injuryNew treatment strategiesWild-type miceAkt isoformsMuscle cell proliferationMuscle-specific deletionMechanism of actionVascular smooth muscle cell differentiationCoronary revascularizationSmooth muscle cell differentiationDiabetes mellitusDiabetic patientsControl miceRapamycin therapyVascular diseaseMuscle injuryTherapeutic responseSevere thrombosis
2015
Impaired LRP6-TCF7L2 Activity Enhances Smooth Muscle Cell Plasticity and Causes Coronary Artery Disease
Srivastava R, Zhang J, Go GW, Narayanan A, Nottoli TP, Mani A. Impaired LRP6-TCF7L2 Activity Enhances Smooth Muscle Cell Plasticity and Causes Coronary Artery Disease. Cell Reports 2015, 13: 746-759. PMID: 26489464, PMCID: PMC4626307, DOI: 10.1016/j.celrep.2015.09.028.Peer-Reviewed Original ResearchConceptsCoronary artery diseaseLRP6 activityArtery diseaseObstructive coronary artery diseaseHigh-fat dietVascular smooth muscle cell differentiationMuscle cell plasticitySmooth muscle cell differentiationAtherosclerotic burdenMedial hyperplasiaCarotid injuryArterial diseaseVascular obstructionNeointima formationTherapeutic targetWnt3a administrationIntact WntVSMC differentiationKnockout backgroundDiseaseMiceVessel wallNon-canonical WntCoreceptor LRP6Cell plasticityPhosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition
Xie Y, Jin Y, Merenick BL, Ding M, Fetalvero KM, Wagner RJ, Mai A, Gleim S, Tucker DF, Birnbaum MJ, Ballif BA, Luciano AK, Sessa WC, Rzucidlo EM, Powell RJ, Hou L, Zhao H, Hwa J, Yu J, Martin KA. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition. Science Signaling 2015, 8: ra44. PMID: 25969542, PMCID: PMC4560350, DOI: 10.1126/scisignal.2005482.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell ProliferationGATA6 Transcription FactorHEK293 CellsHumansMechanistic Target of Rapamycin Complex 1MiceMice, KnockoutMultiprotein ComplexesMuscle ProteinsMuscle, Smooth, VascularMyocytes, Smooth MuscleProto-Oncogene Proteins c-aktTOR Serine-Threonine KinasesConceptsGATA-6Vascular smooth muscle cell differentiationSmooth muscle cell differentiationPhosphorylation-deficient mutantDifferentiation of VSMCsRapamycin complex 1Downstream transcriptional targetsTranscription factor GATA-6Muscle cell differentiationInhibition of mTORC1VSMC hyperplasiaTransactivation of promotersTranscriptional targetsVSMC differentiationNuclear accumulationInduced phosphorylationMechanistic targetReversible differentiationCell differentiationCells undergoDrug targetsInhibition of proliferationPhosphorylationWild-type miceMTORC1
2014
Tissue‐Engineered Vascular Grafts Created From Human Induced Pluripotent Stem Cells
Sundaram S, One J, Siewert J, Teodosescu S, Zhao L, Dimitrievska S, Qian H, Huang AH, Niklason L. Tissue‐Engineered Vascular Grafts Created From Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine 2014, 3: 1535-1543. PMID: 25378654, PMCID: PMC4250208, DOI: 10.5966/sctm.2014-0065.Peer-Reviewed Original ResearchConceptsPluripotent stem cellsMesenchymal lineagesSmooth muscle cell differentiationMuscle cell differentiationStem cellsInduced pluripotent stem cellsNeural crest intermediateHuman induced pluripotent stem cellsMesenchymal progenitor cellsStem cell clonesCollagen-rich matrixCell differentiationVascular developmentHiPSC linesProgenitor cellsSmooth muscle cellsCell apoptosisHiPS cellsLineagesMesenchymal markersGeneration of graftMuscle cellsClonesTissue-engineered vascular graftsCells
2010
Adiponectin Is Secreted by Vascular Smooth Muscle Cells and Regulates Muscle Contractile Phenotype
Ding M, Wagner R, Martin K. Adiponectin Is Secreted by Vascular Smooth Muscle Cells and Regulates Muscle Contractile Phenotype. The FASEB Journal 2010, 24: 957.5-957.5. DOI: 10.1096/fasebj.24.1_supplement.957.5.Peer-Reviewed Original ResearchAdiponectin overexpressionContractile phenotypeVSMC contractile proteinsVascular smooth muscle cellsSmooth muscle cellsContractile protein expressionVascular smooth muscle cell differentiationVSMC contractile phenotypeCardioprotective adipokineSmooth muscle cell differentiationVisceral fatReceptors AdipoR1Endogenous adiponectinRecombinant adiponectinAdiponectinParacrine actionCardioprotective functionParacrine mannerVSMC proliferationHigher order oligomeric formsSiRNA knock-downMuscle cell differentiationMuscle cellsContractile proteinsVSMC
2009
Adiponectin Induces Vascular Smooth Muscle Cell Differentiation via AMPK
Ding M, Wagner R, Fetalvero K, Kasza Z, Powell R, Martin K. Adiponectin Induces Vascular Smooth Muscle Cell Differentiation via AMPK. The FASEB Journal 2009, 23: 577.10-577.10. DOI: 10.1096/fasebj.23.1_supplement.577.10.Peer-Reviewed Original ResearchMTOR inhibitionLower adiponectin levelsVSMC differentiationType 2 diabetesVascular smooth muscle cell phenotypeSmooth muscle cell phenotypeAMPK activationDose-dependent mannerContractile protein expressionAMPK inhibitor compound C.Muscle cell phenotypeVascular smooth muscle cell differentiationVSMC contractile phenotypeAdipo-R1Smooth muscle cell differentiationAdiponectin levelsSerum hormonesCardioprotective roleHormonal inhibitorCardiovascular diseaseAdiponectinCardioprotective functionControl virusEndothelial cellsVSMC
2007
Regulation of vascular smooth muscle cell differentiation
Rzucidlo E, Martin K, Powell R. Regulation of vascular smooth muscle cell differentiation. Journal Of Vascular Surgery 2007, 45: a25-a32. PMID: 17544021, DOI: 10.1016/j.jvs.2007.03.001.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsVascular smooth muscle cell differentiationSmooth muscle cell differentiationMuscle cell differentiationCell differentiationPathogenesis of atherosclerosisMajor human diseasesLocal environmental cuesEnvironmental cuesContractile roleIntimal hyperplasiaDifferentiated stateVascular aneurysmsMolecular mechanismsVascular developmentPhenotypic switchingHuman diseasesVessel wallVSMCCritical roleDifferentiationEssential componentHypertensionAsthmaAtherosclerosisHyperplasia
2006
The prostacyclin receptor induces human vascular smooth muscle cell differentiation via PKA
Fetalvero K, Shyu M, Nomikos A, Chiu Y, Wagner R, Powell R, Hwa J, Martin K. The prostacyclin receptor induces human vascular smooth muscle cell differentiation via PKA. The FASEB Journal 2006, 20: a665-a666. DOI: 10.1096/fasebj.20.4.a665-d.Peer-Reviewed Original ResearchVascular smooth muscle cellsHuman vascular smooth muscle cellsCardiovascular eventsHuman vascular smooth muscle cell differentiationProstacyclin receptorVSMC phenotypeSelective COX-2 inhibitorsAdverse cardiovascular eventsSuperficial femoral arteryProstacyclin analogue iloprostCOX-2 inhibitorsSmooth muscle cellsCAMP/PKA signalingVascular smooth muscle cell differentiationSmooth muscle differentiation markersSmooth muscle cell differentiationArterial injuryCardioprotective effectsFemoral arteryAnalogue iloprostClinical trialsH-caldesmonOrgan donorsAnimal modelsNM iloprost
2005
Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development
Li J, Zhu X, Chen M, Cheng L, Zhou D, Lu MM, Du K, Epstein JA, Parmacek MS. Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 8916-8921. PMID: 15951419, PMCID: PMC1157054, DOI: 10.1073/pnas.0503741102.Peer-Reviewed Original ResearchConceptsCardiac neural crest cellsNeural crest cellsNeural crestTranscription factorsMuscle differentiationSmooth muscle differentiationCrest cellsSmooth muscle cell differentiationTranscription factor BArch arteriesWnt-1 promoterCardiac outflow tract defectsMuscle cell differentiationMutant allele resultsNormal cardiovascular morphogenesisPremigratory neural crestCardiac neural crestGene trap micePattern of expressionCritical roleTranscriptional controlGene trapOutflow tract defectsAortic arch arteriesInsertional mutation
2004
Megakaryoblastic Leukemia Factor-1 Transduces Cytoskeletal Signals and Induces Smooth Muscle Cell Differentiation from Undifferentiated Embryonic Stem Cells*
Du KL, Chen M, Li J, Lepore JJ, Mericko P, Parmacek MS. Megakaryoblastic Leukemia Factor-1 Transduces Cytoskeletal Signals and Induces Smooth Muscle Cell Differentiation from Undifferentiated Embryonic Stem Cells*. Journal Of Biological Chemistry 2004, 279: 17578-17586. PMID: 14970199, DOI: 10.1074/jbc.m400961200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, NorthernCell DifferentiationCell NucleusCells, CulturedChromatinCOS CellsCytoplasmCytoskeletonDNA, ComplementaryDNA-Binding ProteinsEmbryo, MammalianGenes, DominantHumansImmunohistochemistryLuciferasesMiceMyocytes, Smooth MuscleNIH 3T3 CellsNuclear ProteinsOncogene Proteins, FusionPlasmidsPrecipitin TestsPromoter Regions, GeneticProtein BindingProtein Structure, TertiaryProtein TransportReverse Transcriptase Polymerase Chain ReactionSignal TransductionStem CellsTissue DistributionTrans-ActivatorsTranscriptional ActivationTransfectionTwo-Hybrid System TechniquesConceptsSmooth muscle cell differentiationMuscle cell differentiationEmbryonic stem cellsPromoter/enhancerSmooth muscle cellsRhoA signalingSM22alpha promoterCell differentiationUndifferentiated embryonic stem cellsSerum response factorTranscription factor myocardinLeucine zipper domainTranscriptional regulatory elementsStem cellsMost human tissuesCytoskeletal signalsTranscriptional programsTransduce signalsMKL1 mutantSMC differentiationZipper domainRegulatory elementsActin polymerizationMKL1 geneSerum stimulation
2003
The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation
Martin K, Rzucidlo E, Merenick B, Fingar D, Brown D, Wagner R, Powell R. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. American Journal Of Physiology - Cell Physiology 2003, 286: c507-c517. PMID: 14592809, DOI: 10.1152/ajpcell.00201.2003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAorta, ThoracicBiomarkersCattleCell Cycle ProteinsCell DifferentiationCells, CulturedCyclin-Dependent Kinase Inhibitor p21Cyclin-Dependent Kinase Inhibitor p27CyclinsEndothelium, VascularExtracellular Matrix ProteinsImmunosuppressive AgentsMuscle ContractionMuscle, Smooth, VascularPhenotypeProtein KinasesRibosomal Protein S6 Kinases, 70-kDaSignal TransductionSirolimusTOR Serine-Threonine KinasesTumor Suppressor ProteinsConceptsVascular smooth muscle cellsVSMC differentiationVascular smooth muscle cell differentiationSmooth muscle cell differentiationVSMC gene expressionRapamycin-sensitive mTORMuscle cell differentiationContractile morphologyCyclin-dependent kinase inhibitorCell cycle withdrawalExtracellular matrix protein synthesisContractile proteinsMTOR pathway inhibitor rapamycinMuscle alpha-actinTranscriptional controlMatrix protein synthesisNovel functionGene expressionMigratory phenotypeRapamycin inductionMultiple speciesCell differentiationInhibitor rapamycinS6K1 pathwayProtein synthesisMyocardin Is a Critical Serum Response Factor Cofactor in the Transcriptional Program Regulating Smooth Muscle Cell Differentiation
Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS. Myocardin Is a Critical Serum Response Factor Cofactor in the Transcriptional Program Regulating Smooth Muscle Cell Differentiation. Molecular And Cellular Biology 2003, 23: 2425-2437. PMID: 12640126, PMCID: PMC150745, DOI: 10.1128/mcb.23.7.2425-2437.2003.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCell DifferentiationCells, CulturedCOS CellsDNA, ComplementaryGene Expression Regulation, DevelopmentalHumansMiceMicrofilament ProteinsMolecular Sequence DataMuscle ProteinsMuscle, SmoothMuscle, Smooth, VascularMyocardiumNuclear ProteinsOrgan SpecificityPromoter Regions, GeneticRatsRNA, Small InterferingSequence AlignmentSerum Response FactorStem CellsTrans-ActivatorsTranscriptional ActivationConceptsSerum response factorExpression of myocardinTranscriptional programsSerum Response Factor CofactorMyocardin geneSRF DNA-binding domainSmooth muscle cell lineageFunction of myocardinSmooth muscle cell differentiationDNA-binding domainMuscle cell lineageMuscle cell differentiationTranscription factor myocardinTranscriptional regulatory elementsUndifferentiated mouse ES cellsEmbryonic stem cellsMouse ES cellsAlpha promoter activitySmooth muscle alpha-actinSM22 alphaMuscle alpha-actinMutant proteinsVisceral SMCsEmbryonic developmentRegulatory elements
2001
Analysis of SM22α-Deficient Mice Reveals Unanticipated Insights into Smooth Muscle Cell Differentiation and Function
Zhang J, Kim S, Helmke B, Yu W, Du K, Lu M, Strobeck M, Yu Q, Parmacek M. Analysis of SM22α-Deficient Mice Reveals Unanticipated Insights into Smooth Muscle Cell Differentiation and Function. Molecular And Cellular Biology 2001, 21: 1336-1344. PMID: 11158319, PMCID: PMC99586, DOI: 10.1128/mcb.2001.21.4.1336-1344.2001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationEmbryonic and Fetal DevelopmentGene Expression Regulation, DevelopmentalGene TargetingLac OperonMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMicrofilament ProteinsMuscle DevelopmentMuscle ProteinsMuscle, SmoothSignal TransductionTranscriptional ActivationConceptsVisceral SMCsBacterial lacZ reporter geneLocal mesenchymeWestern blot analysisSmooth muscle cell differentiationBeta-galactosidase activityBlood pressureControl littermatesHeart ratePostnatal developmentHomeostatic functionsHistological analysisMiceContractile SMCsBlot analysisDorsal aortaLittermatesAngiogenic programMuscle cell differentiationSM22alphaYolk sacCephalic mesenchymeCell differentiationLacZ reporter geneDetectable beta-galactosidase activity
1989
Modulation of actin mRNAs in cultured vascular cells by matrix components and TGF-β1
Kocher O, Madri J. Modulation of actin mRNAs in cultured vascular cells by matrix components and TGF-β1. In Vitro Cellular & Developmental Biology 1989, 25: 424-434. PMID: 2659578, DOI: 10.1007/bf02624627.Peer-Reviewed Original ResearchConceptsTwo-dimensional cultureActin mRNAEndothelial cell populationSmooth muscle cellsIndividual extracellular matrix proteinsSmooth muscle cell differentiationCell typesRat capillary endothelial cellsMuscle cell differentiationActin mRNA expressionThree-dimensional type ISkeletal muscle cellsMatrix componentsExtracellular matrix proteinsCell populationsCytoplasmic actin mRNAsMuscle actin mRNAEndothelial cellsMuscle cellsSmooth muscle cell markersExtracellular matrix componentsCultured vascular cellsΑ-SM actinBovine aortic endothelial cellsMuscle cell markers
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply