2024
Selective mural cell recruitment of pericytes to networks of assembling endothelial cell-lined tubes
Yrigoin K, Davis G. Selective mural cell recruitment of pericytes to networks of assembling endothelial cell-lined tubes. Frontiers In Cell And Developmental Biology 2024, 12: 1389607. PMID: 38961866, PMCID: PMC11219904, DOI: 10.3389/fcell.2024.1389607.Peer-Reviewed Original ResearchCoronary artery smooth muscle cellsVascular basement membrane matrix depositionVascular basement membrane matrix assemblyEC tubesBasement membrane depositionVascular smooth muscle cellsSmooth muscle cellsInvestigate functional differencesMuscle cellsMatrix assemblyArtery smooth muscle cellsMural cell recruitmentPDGF-DDPlatelet-derived growth factor (PDGF)-BBCollagen matrixMembrane depositionMural cellsHuman coronary artery smooth muscle cellsMinimal recruitmentFunctional differencesEC-derived factorsEndothelin-1CellsMatrix environmentMinimal invasivenessEndothelial HIFα-PDGF-B to smooth muscle Beclin1 signaling sustains pathological muscularization in pulmonary hypertension
Saddouk F, Kuzemczak A, Saito J, Greif D. Endothelial HIFα-PDGF-B to smooth muscle Beclin1 signaling sustains pathological muscularization in pulmonary hypertension. JCI Insight 2024, 9: e162449. PMID: 38652543, PMCID: PMC11141934, DOI: 10.1172/jci.insight.162449.Peer-Reviewed Original ResearchSmooth muscle cellsArteriole smooth muscle cellsPulmonary hypertensionPlatelet-derived growth factor-BDistal muscularizationSugen 5416Endothelial cellsHuman idiopathic pulmonary arterial hypertensionHypoxia-induced pulmonary vascular remodelingPulmonary artery smooth muscle cellsIdiopathic pulmonary arterial hypertensionHypoxia-inducible factor (HIF)-1aArtery smooth muscle cellsDistal pulmonary arteriolesPulmonary arterial hypertensionPulmonary vascular remodelingDeletion of Hif1aLung endothelial cellsGrowth factor BEC-specific deletionPulmonary arteriolesArterial hypertensionLung lysatesMuscle cellsVascular remodeling
2020
Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation
Zeng Z, Xia L, Fan S, Zheng J, Qin J, Fan X, Liu Y, Tao J, Liu Y, Li K, Ling Z, Bu Y, Martin KA, Hwa J, Liu R, Tang WH. Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation. Circulation 2020, 143: 354-371. PMID: 33207953, DOI: 10.1161/circulationaha.120.049715.Peer-Reviewed Original ResearchConceptsHuman coronary artery smooth muscle cellsTet2 knockout miceCoronary artery smooth muscle cellsArtery smooth muscle cellsCircular RNAsSmooth muscle cellsVascular smooth muscle cellsWire-injured mouse femoral arteriesSmooth muscle cell differentiationCircular RNA profilingMuscle cell differentiationRNA sequencing dataLoss of TET2Coronary heart diseaseVascular SMC differentiationMiR-22-3pPlatelet-derived growth factorKnockout miceSMC differentiationMaster regulatorRNA sequencingRNA profilingPlatelet-derived growth factor-BBGene expressionSequencing data
2016
Novel Mechanisms of Disease: Network Biology and MicroRNA Signaling in Pulmonary Hypertension
Fares W, Pandit K, Kaminski N. Novel Mechanisms of Disease: Network Biology and MicroRNA Signaling in Pulmonary Hypertension. 2016, 123-133. DOI: 10.1007/978-3-319-23594-3_7.Peer-Reviewed Original ResearchPulmonary arterial hypertensionSmall non-coding RNAsNon-coding RNAsRole of microRNAsNumerous genesNetwork biologyGene expressionPhysiological processesVascular remodeling diseaseArtery smooth muscle cellsPulmonary artery smooth muscle cellsProgression of PAHMicroRNA signallingNovel mechanismMicroRNAsSmooth muscle cellsRight heart failureMuscle cellsArterial hypertensionPulmonary hypertensionHeart failureEndothelial cellsArterial remodelingHistological changesTherapeutic strategies
2014
Restoration of Impaired Endothelial Myocyte Enhancer Factor 2 Function Rescues Pulmonary Arterial Hypertension
Kim J, Hwangbo C, Hu X, Kang Y, Papangeli I, Mehrotra D, Park H, Ju H, McLean DL, Comhair SA, Erzurum SC, Chun HJ. Restoration of Impaired Endothelial Myocyte Enhancer Factor 2 Function Rescues Pulmonary Arterial Hypertension. Circulation 2014, 131: 190-199. PMID: 25336633, PMCID: PMC4293354, DOI: 10.1161/circulationaha.114.013339.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApelinArteriolesCells, CulturedDisease Models, AnimalDrug Evaluation, PreclinicalEndothelial CellsFibroblast Growth Factor 2HemodynamicsHistone Deacetylase InhibitorsHydroxamic AcidsHypertension, PulmonaryHypertrophy, Right VentricularHypoxiaIntercellular Signaling Peptides and ProteinsMaleMEF2 Transcription FactorsMicroRNAsMonocrotalinePulmonary ArteryPyrrolesRatsRats, Sprague-DawleyRNA InterferenceRNA, Small InterferingTranscription, GeneticConceptsPulmonary arterial hypertensionPulmonary artery endothelial cellsPulmonary vascular homeostasisPAH-pulmonary artery endothelial cellsMyocyte enhancer factor 2Arterial hypertensionCauses of PAHVascular homeostasisExperimental pulmonary hypertension modelsIncreased pulmonary arterial pressurePulmonary artery smooth muscle cellsArtery smooth muscle cellsMEF2 activityRight ventricular failurePulmonary arterial pressurePulmonary hypertension modelPotential therapeutic strategyPotential therapeutic valueSmooth muscle cellsArtery endothelial cellsFactor 2Potential adverse effectsTranscription factor myocyte enhancer factor 2Class IIa HDACsVentricular failure
2012
IL-13 receptor α2-arginase 2 pathway mediates IL-13-induced pulmonary hypertension
Cho WK, Lee CM, Kang MJ, Huang Y, Giordano FJ, Lee PJ, Trow TK, Homer RJ, Sessa WC, Elias JA, Lee CG. IL-13 receptor α2-arginase 2 pathway mediates IL-13-induced pulmonary hypertension. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2012, 304: l112-l124. PMID: 23125252, PMCID: PMC3543640, DOI: 10.1152/ajplung.00101.2012.Peer-Reviewed Original ResearchConceptsPulmonary hypertensionIL-13Human pulmonary artery smooth muscle cellsDevelopment of PHPulmonary artery smooth muscle cellsRight ventricle systolic pressurePathogenesis of PHArtery smooth muscle cellsExpression of ARG2Pulmonary arterial hypertensionPulmonary vascular remodelingVentricle systolic pressurePotential therapeutic targetIL-13 treatmentSmooth muscle cellsNull mutant miceArterial hypertensionEffector cytokinesMedial thickeningSystolic pressureHemodynamic changesPulmonary arterySmall-interfering RNAVascular remodelingArginase-2
2011
CaV1.2 Channel N-terminal Splice Variants Modulate Functional Surface Expression in Resistance Size Artery Smooth Muscle Cells*
Bannister J, Thomas-Gatewood C, Neeb Z, Adebiyi A, Cheng X, Jaggar J. CaV1.2 Channel N-terminal Splice Variants Modulate Functional Surface Expression in Resistance Size Artery Smooth Muscle Cells*. Journal Of Biological Chemistry 2011, 286: 15058-15066. PMID: 21357696, PMCID: PMC3083159, DOI: 10.1074/jbc.m110.182816.Peer-Reviewed Original ResearchConceptsArterial smooth muscle cellsSmooth muscle cellsMuscle cellsSurface expressionIntravascular pressureSmooth muscle-specific expressionArtery smooth muscle cellsDepolarization-induced vasoconstrictionHuman cerebral arteriesWhole-cell currentsReduced surface expressionLarge vasodilationCerebral arteryInflux pathwayVariety of stimuliCardiovascular systemFunctional surface expressionVasodilationProximal N-terminusReduced expressionMuscle-specific expressionE1CAuxiliary subunitsKnockdownPhysiological functions
2010
Goniothalamin induces mitochondria-mediated apoptosis via p53-dependent caspase-2 activation pathway in coronary artery smooth muscle cells
Chan K, Rajab N, Ross D, Inayat-Hussain S. Goniothalamin induces mitochondria-mediated apoptosis via p53-dependent caspase-2 activation pathway in coronary artery smooth muscle cells. Toxicology Letters 2010, 196: s260. DOI: 10.1016/j.toxlet.2010.03.867.Peer-Reviewed Original ResearchArtery smooth muscle cellsCoronary artery smooth muscle cellsSmooth muscle cellsMuscle cellsActivation pathwayGoniothalamin Induces Coronary Artery Smooth Muscle Cells Apoptosis: The p53-Dependent Caspase-2 Activation Pathway
Chan K, Rajab N, Siegel D, Bin Din L, Ross D, Inayat-Hussain S. Goniothalamin Induces Coronary Artery Smooth Muscle Cells Apoptosis: The p53-Dependent Caspase-2 Activation Pathway. Toxicological Sciences 2010, 116: 533-548. PMID: 20498002, DOI: 10.1093/toxsci/kfq151.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid Chloromethyl KetonesApoptosisCaspase 2Cells, CulturedCytochromes cDose-Response Relationship, DrugEnzyme ActivationHumansHydrogen PeroxideMembrane Potential, MitochondrialMuscle, Smooth, VascularMyocytes, Smooth MuscleNAD(P)H Dehydrogenase (Quinone)Oxygen ConsumptionPyronesSuperoxidesTumor Suppressor Protein p53ConceptsCoronary artery smooth muscle cellsCaspase-2Pan-caspase inhibitor benzyloxycarbonylMitochondrial membrane potential lossAsp-fluoromethyl ketoneRole of mitochondriaExternalization of phosphatidylserineMembrane potential lossCaspase-3 cleavageMitochondrial releaseCaspase-8Molecular mechanismsUpstream signalsArtery smooth muscle cellsDNA damage
2006
Genetic Ablation of Caveolin‐1 Modifies Ca2+ Spark Coupling in Murine Arterial Smooth Muscle Cells
Cheng X, Jaggar J. Genetic Ablation of Caveolin‐1 Modifies Ca2+ Spark Coupling in Murine Arterial Smooth Muscle Cells. The FASEB Journal 2006, 20: a1173-a1174. DOI: 10.1096/fasebj.20.5.a1173-d.Peer-Reviewed Original ResearchSmooth muscle cellsKCa channelsMurine arterial smooth muscle cellsCerebral artery smooth muscle cellsL-type voltage-dependent calcium channelsGenetic ablationMuscle cellsArtery smooth muscle cellsSpark frequencyVoltage-dependent calcium channelsArterial smooth muscle cellsSmooth muscle contractilityLarge-conductance Ca2Ryanodine-sensitive Ca2Caveolin-1-deficient miceKCa currentsNOS activityDeficient miceChannel blockersMuscle contractilityCoupling of Ca2SR Ca2Calcium channelsIntracellular Ca2Alters Ca2Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells
Cheng X, Jaggar J. Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells. AJP Heart And Circulatory Physiology 2006, 290: h2309-h2319. PMID: 16428350, PMCID: PMC1698957, DOI: 10.1152/ajpheart.01226.2005.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBariumCadmiumCalcium SignalingCaveolin 1ElectrophysiologyEnzyme InhibitorsFluorescent DyesFura-2IndolesMiceMice, KnockoutMicroscopy, ConfocalMicroscopy, ElectronMuscle, Smooth, VascularMyocytes, Smooth MuscleNitroargininePatch-Clamp TechniquesRyanodine Receptor Calcium Release ChannelConceptsCerebral artery smooth muscle cellsSmooth muscle cellsArtery smooth muscle cellsMuscle cellsMurine arterial smooth muscle cellsGenetic ablationNitric oxide synthase activityVoltage-dependent calcium channelsArterial smooth muscle cellsOxide synthase activitySmooth muscle contractilityChannel blockersMuscle contractilityCalcium channelsCav-1-deficient cellsSpark regulationL-typeElevated intracellularSpark frequencyPotassium channelsSarcoplasmic reticulumCurrent activationCav-1Control cellsRelease channel
2001
Estradiol regulates monocyte chemotactic protein-1 in human coronary artery smooth muscle cells: a mechanism for its antiatherogenic effect
Seli E, Selam B, Mor G, Kayisli U, Pehlivan T, Arici A. Estradiol regulates monocyte chemotactic protein-1 in human coronary artery smooth muscle cells: a mechanism for its antiatherogenic effect. Menopause The Journal Of The North American Menopause Society 2001, 8: 296-301. PMID: 11449089, DOI: 10.1097/00042192-200107000-00013.Peer-Reviewed Original ResearchConceptsHuman coronary artery smooth muscle cellsCoronary artery smooth muscle cellsArtery smooth muscle cellsMonocyte chemotactic protein-1Smooth muscle cellsChemotactic protein-1Recruitment of macrophagesMCP-1 expressionMCP-1 proteinMuscle cellsProtective effectProtein 1Arterial wallSelective estrogen receptor modulatorsCoronary smooth muscle cellsMCP-1 protein productionEstrogen's protective effectPhenol red-free mediumCharcoal-stripped calf serumProtein productionEstrogen receptor modulatorsPathogenesis of atherosclerosisReverse transcriptase-polymerase chain reactionNorthern blotLow-density lipoprotein
1990
Mechanosensitive adenylate cyclase activity in coronary vascular smooth muscle cells
Mills I, Letsou G, Rabban J, Sumpio B, Gewirtz H. Mechanosensitive adenylate cyclase activity in coronary vascular smooth muscle cells. Biochemical And Biophysical Research Communications 1990, 171: 143-147. PMID: 2393388, DOI: 10.1016/0006-291x(90)91368-3.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsCoronary vascular smooth muscle cellsMuscle cellsCyclase activityPorcine coronary artery smooth muscle cellsCultured vascular smooth muscle cellsArtery smooth muscle cellsCoronary artery smooth muscle cellsVascular smooth muscleMagnitude of stretchStretch-induced reductionAdenylate cyclase activityPotential biochemical mechanismsPerfusion pressureCoronary circulationCycles/minMyogenic responseSmooth muscleMechanical stretchAdenylate cyclasePotential mechanismsEntire time courseUnstretched cellsTime course
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply