Stephen Dellaporta, PhD
Professor of Molecular, Cellular, and Developmental BiologyCards
Contact Info
About
Titles
Professor of Molecular, Cellular, and Developmental Biology
Biography
Prof. Dellaporta studied at the University of Rhode Island (1972-76), Iowa State University (1976-78) and at the Worcester Polytechnic Institute (1978-81). His postdoctoral studies in plant molecular genetics were conducted at the Cold Spring Harbor Laboratory (1981-83). He has held positions of Staff Scientist at Cold Spring Harbor (1983-86), Assistant (1986-89), Associate (1990-96) and Full Professor (1996-present) in the Department of Molecular, Cellular and Developmental Biology at Yale University. His research program has focused on the genomic and computational biology of agronomic traits in crops such as of maize, rice and other cereals, including contributions to the identification and utility of of genetic diversity. He has co-authored numerous publications in scientific journals such as Cell, Nature, Science, Proc. Natl. Acad. Sciences, and Genetics, among others, and has served on the scientific advisory panels at the National Institute of Health, the National Science Foundation and the United States Department of Agriculture. Dr. Dellaporta has served a member of the Board of Control of the Connecticut Agricultural Experiment Station for 10 years.
Appointments
Education & Training
- Postdoctoral Associate
- Cold Spring Harbor Laboratory (1983)
- PhD
- Worcester P. Institute, Biomedical Sciences (1981)
- BS
- University of Rhode Island (1976)
Research
Overview
Medical Research Interests
Public Health Interests
ORCID
0000-0001-7452-3291
Research at a Glance
Publications Timeline
Research Interests
Publications
2013
Chapter 7 Hybrid Plant Systems for Breeding and Gene Confinement in Bioenergy Crops
Kausch A, Deresienski A, Hague J, Tilelli M, Dellaporta S, Nelson K, Li Y. Chapter 7 Hybrid Plant Systems for Breeding and Gene Confinement in Bioenergy Crops. 2013, 141-171. DOI: 10.1016/b978-0-444-53878-9.00007-2.Peer-Reviewed Original ResearchCitationsConceptsBiofuel cropsGene confinementPlant systemsPotential of bioenergyAgronomic improvementBioenergy cropsPlant breedingHybrid breedingWild relativesBreeding schemesPetroleum-based hydrocarbonsBiomass yieldBiotechnology toolsNovel traitsTransgenic plantsCropsPerennial plantsBreedingCommercial productionPlant developmentRegional adaptationAgricultural regulationsConfinement strategyPlantsTissue culture
2012
Pollen Sterility—A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops
Hague J, Dellaporta S, Moreno M, Longo C, Nelson K, Kausch A. Pollen Sterility—A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops. Agriculture 2012, 2: 295-315. DOI: 10.3390/agriculture2040295.Peer-Reviewed Original ResearchCitationsAltmetricConceptsBioenergy cropsPollen sterilityTransgene flowGene confinementEscape of transgenesPollen-specific geneReporter gene GUSPollen-specific expressionCurrent regulatory concernTransgenic traitsTransgene confinementBioenergy grassesBreeding strategiesGM cropsCommercial releaseBreeding purposesBiotechnology toolsTransgenic riceCropsGene flowSterility lineRiceSterilityTraitsPromoter
2011
The complete mitochondrial genome of the verongid sponge Aplysina cauliformis: implications for DNA barcoding in demosponges
Sperling E, Rosengarten R, Moreno M, Dellaporta S. The complete mitochondrial genome of the verongid sponge Aplysina cauliformis: implications for DNA barcoding in demosponges. Developments In Hydrobiology 2011, 61-69. DOI: 10.1007/978-94-007-4688-6_7.Peer-Reviewed Original ResearchCitationsConceptsComplete mitochondrial genomeMitochondrial genomeDNA barcodingAplysina cauliformisMitochondrial cytochrome oxidase 1 geneCytochrome oxidase 1 geneNADH dehydrogenase subunit 5Species-level phylogenyLow nucleotide diversityDNA barcoding strategyEntire mitochondrial genomeOxidase 1 geneAmino acid substitutionsNonbilaterian animalsBarcoding fragmentBilaterian animalsComplete mtDNACryptic speciesNucleotide diversityMolecular evolutionSequence divergenceA. cauliformisCaribbean speciesA. fulvaPotential SNPsThe complete mitochondrial genome of the verongid sponge Aplysina cauliformis: implications for DNA barcoding in demosponges
Sperling E, Rosengarten R, Moreno M, Dellaporta S. The complete mitochondrial genome of the verongid sponge Aplysina cauliformis: implications for DNA barcoding in demosponges. Hydrobiologia 2011, 687: 61-69. DOI: 10.1007/s10750-011-0879-x.Peer-Reviewed Original ResearchCitationsAltmetricConceptsComplete mitochondrial genomeMitochondrial genomeDNA barcodingAplysina cauliformisMitochondrial cytochrome oxidase 1 geneCytochrome oxidase 1 geneNADH dehydrogenase subunit 5Species-level phylogenyLow nucleotide diversityDNA barcoding strategyEntire mitochondrial genomeOxidase 1 geneAmino acid substitutionsNonbilaterian animalsBarcoding fragmentBilaterian animalsComplete mtDNACryptic speciesNucleotide diversityMolecular evolutionSequence divergenceA. cauliformisCaribbean speciesA. fulvaPotential SNPsHistocompatibility in an invertebrate is controlled by a complex of polymorphic IgSF-like genes. (170.4)
Nicotra M, Dellaporta S, Buss L. Histocompatibility in an invertebrate is controlled by a complex of polymorphic IgSF-like genes. (170.4). The Journal Of Immunology 2011, 186: 170.4-170.4. DOI: 10.4049/jimmunol.186.supp.170.4.Peer-Reviewed Original ResearchConceptsSingle genomic intervalSophisticated immune systemWild-type coloniesPolymorphic transmembrane proteinCompatible coloniesAllorecognition lociInvertebrate allorecognitionGenomic intervalsPositional cloningReef coralsAllorecognition systemTransmembrane proteinSea squirtExtracellular regionMolecular basisSequence variationGenetic controlGenesAbstract AnimalsIncompatible coloniesAllorecognition responsesHydractiniaCoralsHistocompatibility genesModel system
2009
A Hypervariable Invertebrate Allodeterminant
Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J, Lakkis FG, Dellaporta SL, Buss LW. A Hypervariable Invertebrate Allodeterminant. Current Biology 2009, 19: 583-589. PMID: 19303297, PMCID: PMC2681180, DOI: 10.1016/j.cub.2009.02.040.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsColonial marine invertebratesGreatest sequence similarityPutative transmembrane receptorField-derived strainChimeric coloniesInvertebrate allorecognitionMarine invertebratesLower metazoansSequence similarityIntraspecific competitionTransmembrane receptorsHydractinia symbiolongicarpusMolecular basisExtracellular domainHistocompatibility responsesAllorecognition responsesInvertebratesModel systemGenesColoniesMetazoansCnidariansProtochordatesVertebratesPhylaConcatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern “Urmetazoon” Hypothesis
Schierwater B, Eitel M, Jakob W, Osigus HJ, Hadrys H, Dellaporta SL, Kolokotronis SO, DeSalle R. Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern “Urmetazoon” Hypothesis. PLOS Biology 2009, 7: e1000020. PMID: 19175291, PMCID: PMC2631068, DOI: 10.1371/journal.pbio.1000020.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMetazoan animalsBase of MetazoaPlacozoan Trichoplax adhaerensMitochondrial ribosomal genesMolecular sequence dataEarly metazoan evolutionGene expression patternsNuclear genesConcatenated analysisMetazoan evolutionTrichoplax adhaerensGenome structurePhylogenetic relationshipsRibosomal genesPhylogenetic scenariosSequence dataInformative charactersExpression patternsBasal positionSequence analysisSecondary structureIntriguing modelPlacozoaMorphological evidenceGenestasselseed1 Is a Lipoxygenase Affecting Jasmonic Acid Signaling in Sex Determination of Maize
Acosta I, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL. tasselseed1 Is a Lipoxygenase Affecting Jasmonic Acid Signaling in Sex Determination of Maize. Science 2009, 323: 262-265. PMID: 19131630, DOI: 10.1126/science.1164645.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsJasmonic acidSex determinationPlant hormone jasmonic acidBisexual floral meristemHormone jasmonic acidMale flower developmentCell death processJasmonic acid concentrationsUnisexual floretsStamen developmentStaminate floretsFloral meristemFlower developmentMutant ts1Pistil primordiaInflorescencesDeath processMaizeDevelopmental cascadeFloretsLipoxygenase activityMeristemBiosynthesisAcidPrimordia
2008
The Trichoplax genome and the nature of placozoans
Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS. The Trichoplax genome and the nature of placozoans. Nature 2008, 454: 955-960. PMID: 18719581, DOI: 10.1038/nature07191.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSimplest free-living animalsPlacozoan Trichoplax adhaerensWhole-genome phylogenetic analysisLife history stagesDiverse cell typesFree-living animalsMetazoan formsNuclear genomeCompact genomeTrichoplax adhaerensGene structureGene contentHistory stagesPhylogenetic analysisCellular complexityTranscription factorsPathway genesGenomeDevelopmental processesPlacozoansCell typesEumetazoansSyntenyBilateriansTrichoplax
2007
Embryonic chimerism does not induce tolerance in an invertebrate model organism
Poudyal M, Rosa S, Powell AE, Moreno M, Dellaporta SL, Buss LW, Lakkis FG. Embryonic chimerism does not induce tolerance in an invertebrate model organism. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 4559-4564. PMID: 17360563, PMCID: PMC1838640, DOI: 10.1073/pnas.0608696104.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and Concepts
News & Links
Get In Touch
Contacts
Locations
YSB 326
Academic Office
Yale Science Building
260 Whitney Avenue
New Haven, CT 06511
Appointments
203.432.3895