2023
High body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infection
Nagai M, Moriyama M, Ishii C, Mori H, Watanabe H, Nakahara T, Yamada T, Ishikawa D, Ishikawa T, Hirayama A, Kimura I, Nagahara A, Naito T, Fukuda S, Ichinohe T. High body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infection. Nature Communications 2023, 14: 3863. PMID: 37391427, PMCID: PMC10313692, DOI: 10.1038/s41467-023-39569-0.Peer-Reviewed Original ResearchConceptsTakeda G protein-coupled receptor 5Gut microbiota-dependent mannerSARS-CoV-2 infectionMicrobiota-dependent mannerIncrease host resistanceLethal SARS-CoV-2 infectionDeoxycholic acidSevere acute respiratory syndrome coronavirus 2Neutrophil-dependent tissue damageAcute respiratory syndrome coronavirus 2Influenza virusRespiratory syndrome coronavirus 2G protein-coupled receptor 5Farnesoid X receptor agonistCOVID-19 patientsExposure of miceInfluenza virus infectionSyndrome coronavirus 2Coronavirus disease 2019Host resistanceX receptor agonistCertain bile acidsBasal body temperatureSARS-CoV-2Body temperature
2021
Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA
Oh JE, Song E, Moriyama M, Wong P, Zhang S, Jiang R, Strohmeier S, Kleinstein SH, Krammer F, Iwasaki A. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Science Immunology 2021, 6: eabj5129. PMID: 34890255, PMCID: PMC8762609, DOI: 10.1126/sciimmunol.abj5129.Peer-Reviewed Original ResearchConceptsVirus infectionIgA secretionB cellsMucosal surfacesIgA-secreting B cellsIgA-expressing cellsRole of IgARespiratory virus infectionsIgA-secreting cellsLower respiratory tractInfluenza virus infectionEffective immune protectionHeterologous virus infectionMemory B cellsSecretory immunoglobulin AProtein-based vaccinesB cell populationsPredominant Ig isotypeSite of entryIntranasal primingBronchoalveolar spaceProtective immunityVaccine strategiesRespiratory mucosaImmune protection
2019
Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses
Moriyama M, Koshiba T, Ichinohe T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nature Communications 2019, 10: 4624. PMID: 31604929, PMCID: PMC6789137, DOI: 10.1038/s41467-019-12632-5.Peer-Reviewed Original ResearchConceptsMitochondrial DNANonstructural protein 1Cytosolic mitochondrial DNAMtDNA releaseInfluenza virus M2Antiviral immune responseImportance of DNAVirus M2 proteinImmune responseViroporin activityMAVS-dependent mannerTriggers translocationVirus replicationCytosolic mtDNAAntiviral signalingVirus M2M2 proteinRNA virusesInnate immune responseMtDNAInfluenza virus replicationInfluenza virusNeighboring cellsProtein 1Gap junctionsHigh ambient temperature dampens adaptive immune responses to influenza A virus infection
Moriyama M, Ichinohe T. High ambient temperature dampens adaptive immune responses to influenza A virus infection. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 3118-3125. PMID: 30718396, PMCID: PMC6386664, DOI: 10.1073/pnas.1815029116.Peer-Reviewed Original ResearchConceptsAdaptive immune responsesHeat-exposed miceVirus-specific adaptive immune responsesInfluenza virus infectionImmune responseVirus infectionVirus-specific CD8 T cellsRespiratory influenza virus infectionDietary short chain fatty acidCD8 T cellsDendritic cell migrationExposure of miceAdministration of glucoseThrombocytopenia syndrome phlebovirusCommensal microbiota compositionInflammasome-dependent cytokine secretionShort-chain fatty acidsAntibody responseCytokine secretionLung tissueSevere feverT cellsViral infectionInduction of autophagyMicrobiota composition