2024
Identification of Nuclear NAD+ Salvage As a Therapeutic Vulnerability in B-Lymphoid Malignancies
Robinson M, Li Q, Zhang C, Zhan C, Cheng Z, Kume K, Cosgun K, Kothari S, Agadzhanian N, Nakada D, Müschen M. Identification of Nuclear NAD+ Salvage As a Therapeutic Vulnerability in B-Lymphoid Malignancies. Blood 2024, 144: 4164-4164. DOI: 10.1182/blood-2024-205729.Peer-Reviewed Original ResearchB-ALL cell linesB-ALLB cellsCell linesTherapeutic vulnerabilitiesGene dependenciesNAD+ synthesisMature B-cell lymphomasElimination of B cellsTreatment of B-ALLNAD+ salvageChemotherapy-based regimensEffects of NAMPT inhibitionB-cell depletionB-cell lymphomaB-lymphoid malignanciesB-ALL cellsNAMPT inhibitorsInhibition of NAMPTATP-utilizing enzymesNAD+ salvage pathwayDrug repurposing platformNAD biosynthetic pathwayNear-complete ablationDe novo pathwayIdentification of High-Efficiency β-Catenin Protein Degradation As Critical Vulnerability in B-Cell Malignancies
Cosgun K, Robinson M, Agadzhanian N, Cheng Z, Oulghazi S, Berning P, Fonseca-Arce D, Kume K, Fontaine J, Chan L, Lee J, Yu F, Qian Z, Song J, Chan W, Chen J, Taketo M, Schjerven H, Müschen M. Identification of High-Efficiency β-Catenin Protein Degradation As Critical Vulnerability in B-Cell Malignancies. Blood 2024, 144: 4125-4125. DOI: 10.1182/blood-2024-208125.Peer-Reviewed Original ResearchProtein degradation pathwaysB-ALL cellsProtein degradationRepression of MYCTranscriptional activity of MYCCell deathAcute cell deathLoss of colony formationChIP-seq analysisActive enhancer marksB-cell malignanciesSuper-enhancer regionsActivation of MYCIkaros transcription factorB-lymphoid cellsCell linesB cell identityDefective protein degradationB-cateninNon-lymphoid cell linesDegradation pathwayMantle cell lymphomaProtein levelsB-ALLChIP-seqMechanism of Negative Feedback Regulation of Oncogenic BCR-Signaling in Mature B-Cell Lymphoma
Sun R, Lee J, Robinson M, Kume K, Zhan C, Cheng Z, Cosgun K, Chan L, Leveille E, Kothari S, Katz S, Ma N, Vykunta V, Shy B, Hodson D, Marson A, Vaidehi N, Müschen M. Mechanism of Negative Feedback Regulation of Oncogenic BCR-Signaling in Mature B-Cell Lymphoma. Blood 2024, 144: 3003-3003. DOI: 10.1182/blood-2024-211693.Peer-Reviewed Original ResearchB-cell lymphomaGC B cellsB-cell lymphoma cellsB cellsBCR signalingGerminal centersProteolytic cleavageNK cellsLymphoma cellsMantle cell lymphoma xenograftsAggressive B-cell lymphomasMature B-cell lymphomasB-cell lymphoma subtypesGerminal center B cellsSpontaneous germinal centersGlobal phosphoproteomic studiesActivation marker CD69Aggressiveness of diseaseCD25 surface expressionMechanism of negative feedback regulationB cell autoimmunityFollicular dendritic cellsHuman germinal centerCa2+ oscillationsExpressed increased levelsTargeted Dynamic Phospho-Proteogenomic Analysis of Gastric Cancer Cells Suggests Host Immunity Provides Survival Benefit
Kume K, Iida M, Iwaya T, Yashima-Abo A, Koizumi Y, Endo A, Wade K, Hiraki H, Calvert V, Wulfkuhle J, Espina V, Siwak D, Lu Y, Takemoto K, Suzuki Y, Sasaki Y, Tokino T, Petricoin E, Liotta L, Mills G, Nishizuka S. Targeted Dynamic Phospho-Proteogenomic Analysis of Gastric Cancer Cells Suggests Host Immunity Provides Survival Benefit. Molecular & Cellular Proteomics 2024, 23: 100870. PMID: 39461475, PMCID: PMC11621936, DOI: 10.1016/j.mcpro.2024.100870.Peer-Reviewed Original ResearchDNA-damaging drugsTotal lymphocyte countCell linesResistance to DNA damaging drugsPD-L1Adjuvant chemotherapyProtein dynamicsProtein-level regulationSurvival benefitCopy number lossExpression time courseGastric cancerRelapse-free survival rateGastric cancer cellsHost immunityAssociated with prolonged survivalIncreased STAT1 phosphorylationResistance to other drugsGlobal protein dynamicsImmune checkpoint blockadePD-L1 positivityPD-L1 expressionAdvanced gastric cancerExpression of STAT1Molecular targeted drugs
2023
Optogenetic Control of Oncogenic Signaling in B-Cell Malignancies
Kume K, Lee J, Cheng Z, Robinson M, Leveille E, Cosgun K, Chan L, Feng Y, Arce D, Khanduja D, Toomre D, Müschen M. Optogenetic Control of Oncogenic Signaling in B-Cell Malignancies. Blood 2023, 142: 4138. DOI: 10.1182/blood-2023-190926.Peer-Reviewed Original ResearchB-cell malignanciesB-cell lymphomaMature B-cell lymphomasB cell deathB cellsB cell developmentGenetic deletionMantle cell lymphomaNF-kB signalingBCR signal inhibitorsB cell precursorsCell of originCell viabilityChronic active BCRB cell survivalB cell receptor signalsHodgkin's diseaseMultiple myelomaNormal B cell developmentPlasma cellsBtk tyrosine kinaseCell lymphomaBurkitt's lymphomaNF-kBSmall molecule inhibitorsSTAT5-Feedback Controls Distinct Metabolic States for Dynamic Transitions between Cellular Activation and Quiescence in Acute Lymphoblastic Leukemia
Kume K, Chen Z, Robinson M, Chan L, Leveille E, Cosgun K, Cheng Z, Arce D, Khanduja D, Graeber T, Müschen M. STAT5-Feedback Controls Distinct Metabolic States for Dynamic Transitions between Cellular Activation and Quiescence in Acute Lymphoblastic Leukemia. Blood 2023, 142: 2977. DOI: 10.1182/blood-2023-191006.Peer-Reviewed Original ResearchB-cell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaLymphoblastic leukemiaPharmacological inhibitionGenetic deletionCellular activationReceptor signalingCell deathBone marrow relapsePoor overall outcomePoor clinical outcomeLeukemia-initiating capacityOncogenic STAT5Mass spectrometry-based metabolomics analysisExpression levelsPhosphorylation of STAT5Flow cytometry analysisMetabolic statePositive MRDRole of mTORMarrow relapseAggressive courseClinical outcomesExcessive protein synthesisMetabolic outcomesImmunoglobulin Light Chains Control Permissiveness to Malignant B-Cell Transformation By RAS-Pathway Lesions
Chan L, Kume K, Hurtz C, Robinson M, Cosgun K, Müschen M. Immunoglobulin Light Chains Control Permissiveness to Malignant B-Cell Transformation By RAS-Pathway Lesions. Blood 2023, 142: 2974. DOI: 10.1182/blood-2023-190163.Peer-Reviewed Original ResearchJeKo-1 cellsB cell precursorsMature B cellsB cellsMantle cell lymphoma cellsCell lymphoma cellsGenetic ablationImmunoglobulin light chainsRAS activationOncogenic RASMalignant transformationB-cell acute lymphoblastic leukemiaConventional light chainsRAS pathwayLymphoma cellsCell deathOncogenic RAS activationLight chainAcute lymphoblastic leukemiaMature B-cell lymphomasTransgenic mouse modelB-cell lymphomaB-cell malignanciesMalignant B-cell transformationKappa-LCRepurposing GSK3B Small Molecule Inhibitors for Refractory Lymphoid Malignancies
Cosgun K, Robinson M, Oulghazi S, Xu L, Xiao G, Chan L, Lee J, Kume K, Leveille E, Arce D, Khanduja D, Feldhahn N, Song J, Chan W, Chen J, Taketo M, Schjerven H, Jellusova J, Kothari S, Davids M, Müschen M. Repurposing GSK3B Small Molecule Inhibitors for Refractory Lymphoid Malignancies. Blood 2023, 142: 2818. DOI: 10.1182/blood-2023-190522.Peer-Reviewed Original ResearchFavorable safety profileSmall molecule inhibitorsT-lymphoid malignancyΒ-catenin degradationLymphoid malignanciesΒ-cateninInteractome studiesSafety profileClinical trialsMolecule inhibitorsLow nanomolar concentrationsΒ-catenin accumulationSolid tumorsRefractory B-cell malignanciesCell deathPK/PD profilesZinc finger proteinRefractory lymphoid malignanciesChIP-seq analysisPhase 2 trialMYC target genesT-cell lymphomaColony formationRapid nuclear accumulationWnt/β-catenin pathwayMYC to BCL6 State-Transitions Determine Cell Size and Metabolic Fluctuations and Define a Novel Biorhythm in B-Cell Malignancies
Cheng Z, Kume K, Müschen M. MYC to BCL6 State-Transitions Determine Cell Size and Metabolic Fluctuations and Define a Novel Biorhythm in B-Cell Malignancies. Blood 2023, 142: 2769. DOI: 10.1182/blood-2023-190972.Peer-Reviewed Original ResearchGerminal center-derived B-cell lymphomaB cell developmentCell size fluctuationsCell cycleImmunoglobulin light chain gene recombinationDNA damage-induced apoptosisDistinct cellular statesNormal B cell developmentDamage-induced apoptosisExit cell cycleCell sizeB cell transitionGene expression profilesQuiescent phenotypeOncogenic tyrosine kinasesCell cycle arrestActivation of autophagySingle-cell sortingCellular statesCell divisionHigher glycolysis activityMYC transcriptionB cell cycleSuppression of glycolysisExpression profiles
2022
Helicobacter pylori modulated host immunity in gastric cancer patients with S-1 adjuvant chemotherapy.
Koizumi Y, Ahmad S, Ikeda M, Yashima-Abo A, Espina G, Sugimoto R, Sugai T, Iwaya T, Tamura G, Koeda K, Liotta LA, Takahashi F, Nishizuka SS, Northern Japan Gastric Cancer Study Consortium .. Helicobacter pylori modulated host immunity in gastric cancer patients with S-1 adjuvant chemotherapy. J Natl Cancer Inst 2022 PMID: 35437596, DOI: 10.1093/jnci/djac085.Peer-Reviewed Original ResearchSYK and ZAP70 kinases in autoimmunity and lymphoid malignancies
Leveille E, Chan LN, Mirza AS, Kume K, Müschen M. SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cellular Signalling 2022, 94: 110331. PMID: 35398488, DOI: 10.1016/j.cellsig.2022.110331.Peer-Reviewed Original ResearchConceptsChronic lymphocytic leukemiaB-cell malignanciesT cell receptorB cell receptorB-cell chronic lymphocytic leukemiaPathological B-cellsPoor clinical outcomeAcute lymphoblastic leukemiaExpression of SykT lymphocyte developmentClinical outcomesAggressive diseaseActivation of NFATAutoimmune diseasesLymphoblastic leukemiaT lymphocytesLymphocytic leukemiaCell lymphomaLymphoid malignanciesB cellsPI3K-pathwayOncogenic driversMalignancyNegative selectionPremalignant cells
2021
Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer
Sadras T, Martin M, Kume K, Robinson ME, Saravanakumar S, Lenz G, Chen Z, Song JY, Siddiqi T, Oksa L, Knapp AM, Cutler J, Cosgun KN, Klemm L, Ecker V, Winchester J, Ghergus D, Soulas-Sprauel P, Kiefer F, Heisterkamp N, Pandey A, Ngo V, Wang L, Jumaa H, Buchner M, Ruland J, Chan WC, Meffre E, Martin T, Müschen M. Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Molecular Cell 2021, 81: 2094-2111.e9. PMID: 33878293, PMCID: PMC8239336, DOI: 10.1016/j.molcel.2021.03.043.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD19AutoimmunityB-LymphocytesCalciumCell DifferentiationCell Transformation, NeoplasticEnzyme ActivationHumansImmune ToleranceLymphoma, B-CellMiceModels, GeneticNeoplasm ProteinsNeoplasmsNFATC Transcription FactorsPhosphatidylinositol 3-KinasesProtein BindingReceptors, Antigen, B-CellSignal TransductionSyk KinaseZAP-70 Protein-Tyrosine KinasePON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis
Pan L, Hong C, Chan LN, Xiao G, Malvi P, Robinson ME, Geng H, Reddy ST, Lee J, Khairnar V, Cosgun KN, Xu L, Kume K, Sadras T, Wang S, Wajapeyee N, Müschen M. PON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2016553118. PMID: 33531346, PMCID: PMC7896313, DOI: 10.1073/pnas.2016553118.Peer-Reviewed Original ResearchConceptsTransplant recipient miceDNA double-strand breaksNormal B cell developmentDouble-strand breaksB cell developmentGenetic deletionB cellsLymphoid transcription factorsGlucose transporter GLUT1Gatekeeper functionGlucose uptakeRecipient miceTranscription factorsSomatic recombinationSynthetic lethalityB-cell acute lymphoblastic leukemiaCell developmentMetabolic gatekeeperRefractory B-ALLDeficient murineCell acute lymphoblastic leukemiaPoor clinical outcomeCell typesAcute lymphoblastic leukemiaGlucose transport
2020
IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells
Lee J, Robinson ME, Ma N, Artadji D, Ahmed MA, Xiao G, Sadras T, Deb G, Winchester J, Cosgun KN, Geng H, Chan LN, Kume K, Miettinen TP, Zhang Y, Nix MA, Klemm L, Chen CW, Chen J, Khairnar V, Wiita AP, Thomas-Tikhonenko A, Farzan M, Jung JU, Weinstock DM, Manalis SR, Diamond MS, Vaidehi N, Müschen M. IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature 2020, 588: 491-497. PMID: 33149299, PMCID: PMC8087162, DOI: 10.1038/s41586-020-2884-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD19B-LymphocytesCell Transformation, NeoplasticFemaleGerminal CenterHumansIntegrinsMembrane MicrodomainsMembrane ProteinsMiceMice, Inbred C57BLMice, Inbred NODModels, MolecularPhosphatidylinositol 3-KinasesPhosphatidylinositol PhosphatesPhosphorylationReceptors, Antigen, B-CellRNA-Binding ProteinsSignal TransductionConceptsPI3KCell leukemiaAntiviral effector functionsAntigen-specific antibodiesInterferon-induced transmembrane proteinsIFITM3 functionDevelopment of leukemiaCell surfacePoor outcomeOncogenic PI3KClinical cohortEffector functionsGerminal centersMouse modelB cellsExpression of IFITM3Malignant transformationAccumulation of PIP3PI3K signalsCell receptorNormal numbersLeukemiaDefective expressionEndosomal proteinIFITM3Signalling input from divergent pathways subverts B cell transformation
Chan LN, Murakami MA, Robinson ME, Caeser R, Sadras T, Lee J, Cosgun KN, Kume K, Khairnar V, Xiao G, Ahmed MA, Aghania E, Deb G, Hurtz C, Shojaee S, Hong C, Pölönen P, Nix MA, Chen Z, Chen CW, Chen J, Vogt A, Heinäniemi M, Lohi O, Wiita AP, Izraeli S, Geng H, Weinstock DM, Müschen M. Signalling input from divergent pathways subverts B cell transformation. Nature 2020, 583: 845-851. PMID: 32699415, PMCID: PMC7394729, DOI: 10.1038/s41586-020-2513-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCell Line, TumorCell Transformation, NeoplasticEnzyme ActivationExtracellular Signal-Regulated MAP KinasesFemaleHumansLeukemia, B-CellMiceProtein Tyrosine Phosphatase, Non-Receptor Type 6Proto-Oncogene Proteins c-bcl-6Proto-Oncogene Proteins c-mycSignal TransductionSTAT5 Transcription FactorConceptsPre-B cell receptorPrincipal oncogenic driverDivergent pathwaysSignal transduction proteinsPro-B cell stageSingle-cell mutationTranscription factor MYCOncogenic driversDivergent signaling pathwaysSingle oncogenic pathwayCentral oncogenic driverMore mature cellsGenetic reactivationTranscriptional programsB-cell transformationProtein kinasePathway componentsERK activationIndividual mutationsOncogenic STAT5Signaling pathwaysCell transformationCytokine receptorsGenetic lesionsDivergent circuits
2019
RPPAs for Cell Subpopulation Analysis
Kume K, Nishizuka SS. RPPAs for Cell Subpopulation Analysis. Advances In Experimental Medicine And Biology 2019, 1188: 227-237. PMID: 31820391, DOI: 10.1007/978-981-32-9755-5_12.ChaptersConceptsDrug-tolerant persistersStem cell-associated proteinsReverse phase protein arrayTolerant cell linesCell linesPhase protein arrayDifferent cell typesCell-associated proteinsGastric cancer cell linesCell biologyProteomic profilingProteomic profilesTolerant linesCellular heterogeneityClonal populationsCancer biologyPI3KCell typesCancer cell linesProtein arraysStem cellsIndividual subpopulationsProliferative conditionsBiologyProteinRecurrence risk evaluation in T1N1M0/T2N0M0/T3N0M0 gastric cancer with TP53 codon 72 polymorphisms
Ohmori Y, Nomura T, Fukushima N, Takahashi F, Iwaya T, Koeda K, Nishizuka S, Consortium M. Recurrence risk evaluation in T1N1M0/T2N0M0/T3N0M0 gastric cancer with TP53 codon 72 polymorphisms. Journal Of Surgical Oncology 2019, 120: 1154-1161. PMID: 31578743, DOI: 10.1002/jso.25718.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdultAgedAged, 80 and overCodonFemaleFollow-Up StudiesGastrectomyGenetic Predisposition to DiseaseGenotypeHumansIncidenceJapanMaleMiddle AgedNeoplasm Recurrence, LocalNeoplasm StagingPolymorphism, Single NucleotideRisk AssessmentStomach NeoplasmsSurvival RateTumor Suppressor Protein p53ConceptsRelapse-free survivalTP53 codon 72 polymorphismArg/ArgCodon 72 polymorphismGastric cancerOverall survivalHazard ratioHigh-risk patient groupsPostoperative adjuvant chemotherapyRecurrence risk evaluationArg/ProPro/Pro groupAdjuvant chemotherapyT3N0M0 patientsCurative intentStudy cohortPatient groupPro polymorphismEntire observation periodPolymorphism statusPRO groupPatientsArg/CancerPro/
2017
Colony Lysate Arrays for Proteomic Profiling of Drug-Tolerant Persisters of Cancer Cell
Kume K, Nishizuka SS. Colony Lysate Arrays for Proteomic Profiling of Drug-Tolerant Persisters of Cancer Cell. Analytical Chemistry 2017, 89: 8626-8631. PMID: 28753272, DOI: 10.1021/acs.analchem.7b01215.Peer-Reviewed Original ResearchConceptsDrug-tolerant persistersCancer cellsTranscription factorsProteomic profilingProteomic profilesLevels of proteinIndividual coloniesProtein array systemNumber of assaysSingle cellsProtein levelsCritical mechanismFunctional informationAlternative therapeutic targetsProteinTherapeutic targetFunctional heterogeneityCellsInitiation of relapseProfilingPersistersAgarose gelOct4ASTAT3ColoniesInhibition of PI3K suppresses propagation of drug-tolerant cancer cell subpopulations enriched by 5-fluorouracil
Ishida K, Ito C, Ohmori Y, Kume K, Sato KA, Koizumi Y, Konta A, Iwaya T, Nukatsuka M, Kobunai T, Takechi T, Nishizuka SS. Inhibition of PI3K suppresses propagation of drug-tolerant cancer cell subpopulations enriched by 5-fluorouracil. Scientific Reports 2017, 7: 2262. PMID: 28536445, PMCID: PMC5442158, DOI: 10.1038/s41598-017-02548-9.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntimetabolites, AntineoplasticCell Line, TumorCell ProliferationClass I Phosphatidylinositol 3-KinasesCodonDisease Models, AnimalDose-Response Relationship, DrugDrug Resistance, NeoplasmFluorouracilGenetic VariationHeterograftsHumansMiceNeoplasmsPhenotypePhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphorylationProteomeProteomicsRibosomal Protein S6 Kinases, 90-kDaSignal TransductionConceptsOrthotopic xenograftsCancer cell subpopulationsCell subpopulationsGastric cancer cell line MKN45Gastric cancer chemotherapyRibosomal S6 kinase phosphorylationPI3K inhibitorsDisease relapseSequential administrationS6 kinase phosphorylationNude miceTumor propagationCancer chemotherapyK inhibitorsXenograftsPI3KChemotherapyRelapseTolerant subpopulationSubpopulationsKinase phosphorylationAdministrationCellsPhosphorylated phosphatidylinositidesMiceQuantitative data collection for cancer biology. In: Suzuki T, Kubota H (eds.)
Kume K and Nishizuka S, Quantitative data collection for cancer biology. In: Suzuki T, Kubota H (eds.), Experimental Medicine. Yodosha. 2017; 35(5): 81-85Chapters