2024
The RRE-REV module has no effect on the packaging efficiency of cas9 and Gag proteins into nanomedic virus-like particles
Kruglova N, Komkov D, Mazurov D, Shepelev M. The RRE-REV module has no effect on the packaging efficiency of cas9 and Gag proteins into nanomedic virus-like particles. Доклады Российской Академии Наук Науки О Жизни 2024, 515: 64-70. DOI: 10.31857/s2686738924020121.Peer-Reviewed Original ResearchRev expression plasmidVirus-like particlesEmpty control plasmidGene therapy of human diseasesGag proteinTherapy of human diseasesGene therapyViral Gag proteinTarget cellsControl plasmidProtein levelsCas9 nucleaseGenome editingGagEfficiency of genome editingMethods of genome editingExpression of Cas9Plasmid constructsCotransfectionHuman diseasesPlasmidCell lysatesNuclear export
2023
The RRE–Rev Module Has No Effect on the Packaging Efficiency of Cas9 and Gag Proteins into NanoMEDIC Virus-like Particles
Kruglova N, Komkov D, Mazurov D, Shepelev M. The RRE–Rev Module Has No Effect on the Packaging Efficiency of Cas9 and Gag Proteins into NanoMEDIC Virus-like Particles. Doklady Biological Sciences 2023, 513: s45-s50. PMID: 38472686, DOI: 10.1134/s0012496623700886.Peer-Reviewed Original ResearchConceptsRev expression plasmidVirus-like particlesRev response elementEmpty control plasmidGene therapy of human diseasesGag proteinTherapy of human diseasesCas9 nucleaseGene therapyGenome editingGag expressionViral Gag proteinHIV Rev response elementTarget cellsEfficiency of genome editingMethods of genome editingControl plasmidProtein levelsNuclear exportNo effectPlasmid modificationGagResponse elementAccessory proteinsPlasmid constructsPackaging and Uncoating of CRISPR/Cas Ribonucleoproteins for Efficient Gene Editing with Viral and Non-Viral Extracellular Nanoparticles
Mazurov D, Ramadan L, Kruglova N. Packaging and Uncoating of CRISPR/Cas Ribonucleoproteins for Efficient Gene Editing with Viral and Non-Viral Extracellular Nanoparticles. Viruses 2023, 15: 690. PMID: 36992399, PMCID: PMC10056905, DOI: 10.3390/v15030690.Peer-Reviewed Original ResearchConceptsTarget cellsExtracellular nanoparticlesFunctional genomic studiesGene editingCell-type specificityGene editing applicationsGenomic studiesViral particle productionEfficient gene editingDisease correctionPackaging mechanismRibonucleoproteinNon-viralEditing efficiencyOff-target activityEffector nucleasesClinical utilityCurrent delivery systemsOff-target effectsLipofection methodCRISPR/CasPrimary cellsCRISPR/Cas ribonucleoproteinDNA exposureGenes
2021
Different Neutralization Sensitivity of SARS-CoV-2 Cell-to-Cell and Cell-Free Modes of Infection to Convalescent Sera
Kruglova N, Siniavin A, Gushchin V, Mazurov D. Different Neutralization Sensitivity of SARS-CoV-2 Cell-to-Cell and Cell-Free Modes of Infection to Convalescent Sera. Viruses 2021, 13: 1133. PMID: 34204732, PMCID: PMC8231521, DOI: 10.3390/v13061133.Peer-Reviewed Original ResearchConceptsCell-free modeNeutralizing activityConvalescent seraAnalysis of cell-freeCell-to-cell infectionPermissive target cellsNeutralizing activity of serum antibodiesSARS-CoV-2Mechanisms of SARS-CoV-2 transmissionResistant to neutralizationSARS-CoV-2 neutralizationPseudoviral assayNeutralization sensitivitySpike (S) proteinCell coculturesCell-to-cellTarget cellsSerum antibodiesCell-freeInfectionMode of infectionSARS-CoV-2 transmissionMode of SARS-CoV-2 transmissionPurified particlesPseudoviral system
2019
Distinct Requirements for HIV-1 Accessory Proteins during Cell Coculture and Cell-Free Infection
Zotova A, Atemasova A, Pichugin A, Filatov A, Mazurov D. Distinct Requirements for HIV-1 Accessory Proteins during Cell Coculture and Cell-Free Infection. Viruses 2019, 11: 390. PMID: 31027334, PMCID: PMC6563509, DOI: 10.3390/v11050390.Peer-Reviewed Original ResearchMeSH KeywordsCD4-Positive T-LymphocytesCell LineCell-Free SystemCells, CulturedCoculture TechniquesGene Expression Regulation, ViralGene Knockdown TechniquesHIV InfectionsHIV-1Human Immunodeficiency Virus ProteinsHumansJurkat CellsMutationNef Gene Products, Human Immunodeficiency VirusViral Regulatory and Accessory ProteinsVirus ReplicationConceptsCell-free infectionHIV-1 infectionCell coculturesHIV-1Cell-to-cell transmission of HIV-1Transmission of HIV-1Nonlymphoid cellsHIV-1 accessory proteinHIV-1 replicationMeasuring virus replicationVirus replicationCell-to-cell transmissionEffector cellsLymphoid cellsMode of transmissionTarget cellsProducing cellsStages of infectionEnhanced replicationAccessory proteinsInfectionCocultureInfected cellsReporter vectorViral particles
2015
Improvement of HIV-1 and Human T Cell Lymphotropic Virus Type 1 Replication-Dependent Vectors via Optimization of Reporter Gene Reconstitution and Modification with Intronic Short Hairpin RNA
Shunaeva A, Potashnikova D, Pichugin A, Mishina A, Filatov A, Nikolaitchik O, Hu W, Mazurov D. Improvement of HIV-1 and Human T Cell Lymphotropic Virus Type 1 Replication-Dependent Vectors via Optimization of Reporter Gene Reconstitution and Modification with Intronic Short Hairpin RNA. Journal Of Virology 2015, 89: 10591-10601. PMID: 26269177, PMCID: PMC4580202, DOI: 10.1128/jvi.01940-15.Peer-Reviewed Original ResearchMeSH KeywordsBiological AssayCD4-Positive T-LymphocytesCell LineGamma-GlobinsGenes, ReporterGenetic EngineeringGenetic VectorsGreen Fluorescent ProteinsHEK293 CellsHIV-1Human T-lymphotropic virus 1HumansIntronsLuciferasesLuminescent ProteinsMicroRNAsRNA SplicingRNA, Small InterferingTransfectionVirionVirus ReplicationConceptsCell-to-cell transmissionCell-mediated infectionVirus type 1HIV-1Gamma-globinTarget cellsHTLV-1Infected cellsHIV-1-infected cellsHuman immunodeficiency virus type 1Human T-cell lymphotropic virus type 1Immunodeficiency virus type 1Type 1Human gamma-globin geneHIV-1 EnvCell-free infectionVirus-producing cellsGamma-globin genesInfected target cellsStudy HIV-1Reporter vectorReporter geneRetrovirus HTLV-1Level of reporter gene expressionShort hairpin RNA
2014
104 Cell-to-cell transmission of HIV
Mazurov D, Filatov A. 104 Cell-to-cell transmission of HIV. JAIDS Journal Of Acquired Immune Deficiency Syndromes 2014, 65: 40. PMCID: PMC4149629, DOI: 10.1097/01.qai.0000446684.24980.4f.Peer-Reviewed Original ResearchCell-to-cell transmission of HIVCell-to-cell transmissionTransmission of HIVVirological synapseTarget cellsHIV cell-to-cell transmissionCD4+ T lymphocytesModel of HIV transmissionSurface of effector cellsCell-to-cell infectionCell-to-cell viral transmissionCell-free infectionResistance of HIVPeripheral lymph nodesModified target cellsFormation of intercellular contactsHIV surface protein gp120Infected cellsT cell linesFree viral particlesEffector cellsIntercellular adhesive junctionsLymph nodesT lymphocytesCD4 receptor
2010
Quantitative Comparison of HTLV-1 and HIV-1 Cell-to-Cell Infection with New Replication Dependent Vectors
Mazurov D, Ilinskaya A, Heidecker G, Lloyd P, Derse D. Quantitative Comparison of HTLV-1 and HIV-1 Cell-to-Cell Infection with New Replication Dependent Vectors. PLOS Pathogens 2010, 6: e1000788. PMID: 20195464, PMCID: PMC2829072, DOI: 10.1371/journal.ppat.1000788.Peer-Reviewed Original ResearchConceptsCell-to-cell infectionEnv expression plasmidsHTLV-1 transmissionHIV-1HTLV-1Packaging vectorTarget cellsCocultured target cellsHIV-1 vectorsHIV-1 infectionHTLV-1 infectionCell-free infectionCell-cell interactionsReporter vectorInhibited HTLV-1Enhance virus infectionLymphocyte cell linesTarget cell typeHTLV-1 TaxEffector cellsReporter gene activityT cellsB cellsReporter gene expressionTime course study