2025
Specification of claustro-amygdalar and palaeocortical neurons and circuits
Kaur N, Kovner R, Gulden F, Pletikos M, Andrijevic D, Zhu T, Silbereis J, Shibata M, Shibata A, Liu Y, Ma S, Salla N, de Martin X, Klarić T, Burke M, Franjic D, Cho H, Yuen M, Chatterjee I, Soric P, Esakkimuthu D, Moser M, Santpere G, Mineur Y, Pattabiraman K, Picciotto M, Huang H, Sestan N. Specification of claustro-amygdalar and palaeocortical neurons and circuits. Nature 2025, 638: 469-478. PMID: 39814878, PMCID: PMC11821539, DOI: 10.1038/s41586-024-08361-5.Peer-Reviewed Original ResearchConceptsBasolateral amygdala complexPrefrontal cortex connectivityPrefrontal cortexNeuropsychiatric disordersExcitatory neuronsSymptoms of neuropsychiatric disordersEarly-life disruptionAmygdala complexPiriform cortexTemporal cortexDevelopmental shiftReciprocal connectionsCortexClaustrumBehavior modificationSensory informationTranscription factor SOX4DisordersTfap2dNeuronsSimilar alterationsCross-species analysisPiriformSOX11Transcription factors
2024
Stepwise pathways from the olfactory cortex to central hub regions in the human brain
Menelaou G, Diez I, Zelano C, Zhou G, Persson J, Sepulcre J, Olofsson J. Stepwise pathways from the olfactory cortex to central hub regions in the human brain. Human Brain Mapping 2024, 45: e26760. PMID: 39688149, PMCID: PMC11651219, DOI: 10.1002/hbm.26760.Peer-Reviewed Original ResearchConceptsDefault-mode networkCortical hubsHuman brainDefault-mode network regionsAnterior olfactory nucleusFunctional connectivity researchProcessing rewardOrbitofrontal cortexAnterior insulaOlfactory tubercleFrontal sulcusPiriform cortexOlfactory cortexCortical subregionsOlfactory nucleusAssociation cortexLanguage acquisitionParietal operculumNeural activityTemporal regionsCortical networksSynchronous neural activityOlfactory pathwaySensory cortexOlfactory systemInflammatory Response and Defects on Myelin Integrity in the Olfactory System of K18hACE2 Mice Infected with SARS-CoV-2
Martin-Lopez E, Brennan B, Mao T, Spence N, Meller S, Han K, Yahiaoui N, Wang C, Iwasaki A, Greer C. Inflammatory Response and Defects on Myelin Integrity in the Olfactory System of K18hACE2 Mice Infected with SARS-CoV-2. ENeuro 2024, 11: eneuro.0106-24.2024. PMID: 38834299, PMCID: PMC11185043, DOI: 10.1523/eneuro.0106-24.2024.Peer-Reviewed Original ResearchOlfactory bulbOlfactory epitheliumPiriform cortexOlfactory tractOlfactory systemSARS-CoV-2Projection neuronsMyelination defectsOlfactory sensory neuronsLateral olfactory tractLoss of olfactionRespiratory epithelial cellsLamina propria macrophagesSARS-CoV-2 infectionInfected SCDays of infectionIntegrity of myelinOlfactory dysfunctionInfected microgliaSensitive to infectionOlfactory deficitsSensory neuronsSustentacular cellsNasal cavityNeuronal conduction
2022
Interictal-period-activated neuronal ensemble in piriform cortex retards further seizure development
Lai N, Cheng H, Li Z, Wang X, Ruan Y, Qi Y, Yang L, Fei F, Dai S, Chen L, Zheng Y, Xu C, Fang J, Wang S, Chen Z, Wang Y. Interictal-period-activated neuronal ensemble in piriform cortex retards further seizure development. Cell Reports 2022, 41: 111798. PMID: 36516780, DOI: 10.1016/j.celrep.2022.111798.Peer-Reviewed Original ResearchConceptsGeneralized seizuresActivity-dependent labeling techniquesInterictal periodSeizure developmentIP-enabledNeuronal ensemblesPiriform cortexPotential therapeutic targetCircuit rearrangementsOptogenetic activationHistological evidenceFocal seizuresIctal eventsSeizure generationControlling coherenceCellular mechanismsEpileptic networkSeizuresTherapeutic targetInterictal statePiriformOlfactory decoding is positively associated with ad libitum food intake in sated humans
Perszyk EE, Davis XS, Small DM. Olfactory decoding is positively associated with ad libitum food intake in sated humans. Appetite 2022, 180: 106351. PMID: 36270421, DOI: 10.1016/j.appet.2022.106351.Peer-Reviewed Original ResearchConceptsAd libitum food intakeBody weight regulationFood intakeWeight regulationLong-term body weight regulationHealthy human adultsFunctional magnetic resonancePiriform cortexSatiety stateUnivariate analysisBody weightMeal consumptionPrevious functional magnetic resonanceNonfood odorsWeight changeBrain activationIntakeHuman adultsMulti-voxel pattern analysisHungry stateRole of olfactionOlfactory codingNeural patternsMagnetic resonanceAmygdala
2021
Post-traumatic olfactory loss and brain response beyond olfactory cortex
Pellegrino R, Farruggia MC, Small DM, Veldhuizen MG. Post-traumatic olfactory loss and brain response beyond olfactory cortex. Scientific Reports 2021, 11: 4043. PMID: 33597627, PMCID: PMC7889874, DOI: 10.1038/s41598-021-83621-2.Peer-Reviewed Original ResearchConceptsPosterior cingulate cortexOlfactory impairmentOlfactory cortexFunctional anosmiaPost-traumatic olfactory lossPrimary olfactory areasWhole-brain responsesBrain responsesGray matter densityHigher-order areasOlfactory lossPiriform cortexHead traumaHealthy controlsOlfactory areasOdorless stimuliOlfactory functionMediodorsal thalamusCortical areasVentromedial prefrontal cortexCingulate cortexFrontal operculumCortexAnterior insulaPrefrontal cortex
2018
Development of piriform cortex interhemispheric connections via the anterior commissure: progressive and regressive strategies
Martin-Lopez E, Meller SJ, Greer CA. Development of piriform cortex interhemispheric connections via the anterior commissure: progressive and regressive strategies. Brain Structure And Function 2018, 223: 4067-4085. PMID: 30141078, PMCID: PMC6252112, DOI: 10.1007/s00429-018-1741-y.Peer-Reviewed Original ResearchConceptsAnterior commissurePostnatal developmentPostnatal day 22Inter-hemispheric connectionsChondroitin sulfate proteoglycanPiriform cortexContralateral innervationGlial cellsOlfactory areasBed nucleusInterhemispheric connectionsStria terminalisDay 22Axonal tractsAxon growthNew subtypeAxon outgrowthCalretininCommissureSulfate proteoglycanAxonsPhenotypeInnervationIpsiImmunohistochemistry
2017
The Laminar Organization of Piriform Cortex Follows a Selective Developmental and Migratory Program Established by Cell Lineage
Martin-Lopez E, Ishiguro K, Greer CA. The Laminar Organization of Piriform Cortex Follows a Selective Developmental and Migratory Program Established by Cell Lineage. Cerebral Cortex 2017, 29: 1-16. PMID: 29136113, PMCID: PMC7199997, DOI: 10.1093/cercor/bhx291.Peer-Reviewed Original ResearchConceptsLaminar specificityLaminar organizationNeurogenesis/gliogenesisPrimary afferent inputNeurogenic patternPiriform cortexAfferent inputNeurogenic gradientOlfactory bulbLayers IIGlial organizationNeuronal migrationPC progenitorsLaminar developmentCortexFunctional organizationClonal analysisCell lineagesLikely roleEarly developmentPaleocortexAnteriorNeurogenesisSpecificityGliogenesis
2016
Progressive neuronal activation accompanies epileptogenesis caused by hippocampal glutamine synthetase inhibition
Albright B, Dhaher R, Wang H, Harb R, Lee TW, Zaveri H, Eid T. Progressive neuronal activation accompanies epileptogenesis caused by hippocampal glutamine synthetase inhibition. Experimental Neurology 2016, 288: 122-133. PMID: 27769717, PMCID: PMC5547560, DOI: 10.1016/j.expneurol.2016.10.007.Peer-Reviewed Original ResearchConceptsMesial temporal lobe epilepsyNeuronal activationHippocampal formationHuman mesial temporal lobe epilepsyAnterior olfactory areaEntorhinal-hippocampal areaProcess of epileptogenesisC-Fos immunohistochemistryTemporal lobe epilepsyTypes of seizuresGlutamine synthetase inhibitionSurgical resectionPiriform cortexSeizure severityLobe epilepsyHippocampal astrocytesEpilepsy developmentEpileptogenic processElectroencephalogram monitoringOlfactory areasPharmacological interventionsSeizure phenotypeBed nucleusMidline thalamusStria terminalis
2014
Nonsensory target-dependent organization of piriform cortex
Chen CF, Zou DJ, Altomare CG, Xu L, Greer CA, Firestein SJ. Nonsensory target-dependent organization of piriform cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 16931-16936. PMID: 25385630, PMCID: PMC4250170, DOI: 10.1073/pnas.1411266111.Peer-Reviewed Original ResearchConceptsPiriform cortexOrbitofrontal cortexMouse piriform cortexOutput neuronsPrimary sensory cortexAssociation fiber systemsFluorescent retrograde tracingLateral orbitofrontal cortexRetrograde tracingEfferent componentsEfferent pathwaysAfferent inputEfferent projectionsOlfactory cortexOlfactory bulbAgranular insulaSensory cortexEfferent circuitsCortex
2010
Developmental Dynamics of Piriform Cortex
Sarma AA, Richard MB, Greer CA. Developmental Dynamics of Piriform Cortex. Cerebral Cortex 2010, 21: 1231-1245. PMID: 21041199, PMCID: PMC3140179, DOI: 10.1093/cercor/bhq199.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornBromodeoxyuridineCell DifferentiationCerebral CortexEmbryo, MammalianFemaleGene Expression Regulation, DevelopmentalGlutamate DecarboxylaseGreen Fluorescent ProteinsIndolesMiceMice, TransgenicNerve Tissue ProteinsNeuronsNonlinear DynamicsPregnancyRatsConceptsAnterior piriform cortexPiriform cortexPyramidal cellsLayers IIPostnatal developmentCortical sensory processingNumber of interneuronsMolecular maturationCortical laminationInhibitory synapsesPostnatal eventsInhibitory networksSensory processingOdor codingPaleocortexCortexMorphological basisCellsMaturationInterneuronsNeocortexSynapsesPyramidal Neurons Are Generated from Oligodendroglial Progenitor Cells in Adult Piriform Cortex
Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D. Pyramidal Neurons Are Generated from Oligodendroglial Progenitor Cells in Adult Piriform Cortex. Journal Of Neuroscience 2010, 30: 12036-12049. PMID: 20826667, PMCID: PMC2940828, DOI: 10.1523/jneurosci.1360-10.2010.Peer-Reviewed Original ResearchMeSH KeywordsAdult Stem CellsAnimalsAntigensAntineoplastic Agents, HormonalBromodeoxyuridineCell CountCell DifferentiationCerebral CortexDoublecortin Domain ProteinsDrug Administration ScheduleEye ProteinsGene Expression RegulationGreen Fluorescent ProteinsHomeodomain ProteinsMiceMice, Inbred C57BLMice, TransgenicMicrotubule-Associated ProteinsMyelin Proteolipid ProteinNerve Tissue ProteinsNeuronsNeuropeptidesOligodendrogliaPaired Box Transcription FactorsPAX6 Transcription FactorProteoglycansPyramidal CellsReceptor, Platelet-Derived Growth Factor alphaReceptors, N-Methyl-D-AspartateRepressor ProteinsSOXB1 Transcription FactorsTamoxifenTime FactorsConceptsOligodendroglial progenitor cellsPyramidal glutamatergic neuronsPiriform cortexAdult piriform cortexGlutamatergic neuronsCortical glutamatergic neuronsProgenitor cellsNeural stem cell markersCortical neuronal networksStem cell markersTranscription factor characteristicImmature neuronsCerebral cortexPyramidal neuronsCell markersCortexNeuronsCre-loxP recombination systemNeuronal networksLines of evidenceMarkersLow levelsCellsPrevious studiesDoublecortin
1984
Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons
Chiodo L, Bannon M, Grace A, Roth R, Bunney B. Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience 1984, 12: 1-16. PMID: 6462443, DOI: 10.1016/0306-4522(84)90133-7.Peer-Reviewed Original ResearchConceptsSpikes/sDopamine neuronsPiriform cortexDopamine levelsCaudate nucleusCingulate cortexIntravenous administrationDopamine cellsFiring rateGlyoxylic acid-induced histofluorescenceCatecholamine histofluorescence techniquesMesocortical dopamine neuronsNerve terminal autoreceptorsNigrostriatal dopamine cellsDose-dependent inhibitory responseDopamine agonist apomorphineBasal discharge rateMidbrain dopaminergic neuronsMidbrain dopaminergic systemMean firing rateMidbrain dopamine systemMesocortical neuronsAgonist apomorphineMicroiontophoretic applicationAntidromic activation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply