2025
Penetrance of neurodevelopmental copy number variants is associated with variations in cortical morphology
Silva A, Sønderby I, Kirov G, Abdellaoui A, Agartz I, Ames D, Armstrong N, Artiges E, Banaschewski T, Bassett A, Bearden C, Blangero J, Boen R, Boomsma D, Bülow R, Butcher N, Calhoun V, Campbell L, Chow E, Ciufolini S, Craig M, Crespo-Farroco B, Cunningham A, Dalvie S, Daly E, Dazzan P, de Geus E, de Zubicaray G, Doherty J, Donohoe G, Drakesmith M, Espeseth T, Frouin V, Garavan H, Glahn D, Goodrich-Hunsaker N, Gowland P, Grabe H, Grigis A, Gudbrandsen M, Gutman B, Haavik J, Håberg A, Hall J, Heinz A, Hohmann S, Hottenga J, Jacquemont S, Jahanshad N, Jonas R, Jones D, Jönsson E, Koops S, Kumar K, Le Hellard S, Lemaitre H, Liu J, Lundervold A, Martinot J, Mather K, McDonald-McGinn D, McMahon K, McRae A, Medland S, Moreau C, Murphy K, Murphy D, Murray R, Nees F, Owen M, Martinot M, Orfanos D, Paus T, Poustka L, Marques T, Roalf D, Sachdev P, Scheffler F, Schmitt J, Schumann G, Steen V, Stein D, Strike L, Teumer A, Thalamuthu A, Thomopoulos S, Tordesillas-Gutiérrez D, Trollor J, Uhlmann A, Vajdi A, van ’t Ent D, van Amelsvoort T, van den Bree M, van der Meer D, Vázquez-Bourgon J, Villalón-Reina J, Völker U, Völzke H, Vorstman J, Westlye L, Williams N, Wittfeld K, Wright M, Thompson P, Andreassen O, Linden D, group E. Penetrance of neurodevelopmental copy number variants is associated with variations in cortical morphology. Biological Psychiatry Cognitive Neuroscience And Neuroimaging 2025 PMID: 40414598, DOI: 10.1016/j.bpsc.2025.05.010.Peer-Reviewed Original ResearchCopy number variantsDevelopmental disordersNeurobiological mechanismsPenetration scoresMechanisms of genetic riskAssociated with variationBrain magnetic resonance imagingCohort of patientsCortical surface areaT1-weighted brain magnetic resonance imagingMagnetic resonance imagingCortical morphometric featuresGenetic dataLingual gyrusClinical phenotypeSubcortical morphologyIncreased riskNeuroimaging dataSchizophreniaBrain abnormalitiesNeurodevelopmental conditionsIntracranial volumeCerebral cortexResonance imagingCortical morphologySpatial transcriptomics reveals human cortical layer and area specification
Qian X, Coleman K, Jiang S, Kriz A, Marciano J, Luo C, Cai C, Manam M, Caglayan E, Lai A, Exposito-Alonso D, Otani A, Ghosh U, Shao D, Andersen R, Neil J, Johnson R, LeFevre A, Hecht J, Micali N, Sestan N, Rakic P, Miller M, Sun L, Stringer C, Li M, Walsh C. Spatial transcriptomics reveals human cortical layer and area specification. Nature 2025, 644: 153-163. PMID: 40369074, PMCID: PMC12328223, DOI: 10.1038/s41586-025-09010-1.Peer-Reviewed Original ResearchNeuronal subtypesMid-gestationHuman fetal cortexExcitatory neuron subtypesCortical layersLayer 4 neuronsCortical areasHuman cortical developmentGestational weeksFetal cortexSingle-nucleus RNA sequencingCortical developmentCerebral cortexSingle-cell transcriptomic studiesHuman cerebral cortexDevelopmental time pointsLaminar distributionAreal specificationCortical arealizationTime pointsSubtypesCortexVisual cortexSingle-cell resolutionCytoarchitectural development
2024
Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment
Sun F, Wang H, Wu J, Quraishi I, Zhang Y, Pedram M, Gao B, Jonas E, Nguyen V, Wu S, Mabrouk O, Jafar-nejad P, Kaczmarek L. Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment. Biomolecules 2024, 14: 1397. PMID: 39595574, PMCID: PMC11591899, DOI: 10.3390/biom14111397.Peer-Reviewed Original ResearchWild-type miceKO miceSpectrum of epilepsy syndromesAntisense oligonucleotidesGain-of-function variantsAntisense oligonucleotide treatmentEpileptic phenotypePotassium channelsKCNT1Molecular profilingOligonucleotide treatmentAnimal modelsEpilepsy syndromesC-terminal mutationsIncreased expressionCerebral cortexMiceExpression of multiple proteinsComprehensive proteomic analysisDisease modelsCortical mitochondriaMolecular differencesDensity of mitochondrial cristaeMitochondrial membraneTreatmentToxic and Metabolic Diseases of the CNS
Subramanian H, Mahajan A. Toxic and Metabolic Diseases of the CNS. What Radiology Residents Need To Know 2024, 231-244. DOI: 10.1007/978-3-031-55124-6_16.ChaptersCentral nervous systemMetabolic disordersBrain parenchymal involvementPredominant site of involvementSite of involvementNonspecific imaging appearancesDeep white matterParenchymal involvementDifferential diagnosisSpinal cordSevere casesImaging appearanceCerebral cortexCorpus callosumWhite matterMetabolic diseasesNervous systemPredominant siteToxic etiologyBasal gangliaSevere disordersDiagnosisDisordersImage patternsImage featuresMultimodal evidence for cerebellar influence on cortical development in autism: structural growth amidst functional disruption
d’Oleire Uquillas F, Sefik E, Li B, Trotter M, Steele K, Seidlitz J, Gesue R, Latif M, Fasulo T, Zhang V, Kislin M, Verpeut J, Cohen J, Sepulcre J, Wang S, Gomez J. Multimodal evidence for cerebellar influence on cortical development in autism: structural growth amidst functional disruption. Molecular Psychiatry 2024, 30: 1558-1572. PMID: 39390225, DOI: 10.1038/s41380-024-02769-1.Peer-Reviewed Original ResearchAutism spectrum disorderNeurotypical childrenFunctional connectivityMultimodal evidenceFunctional connectivity analysisModel of autismCerebro-cerebellar pathwayAtypical connectivitySpectrum disorderConnectivity analysisEarly adolescenceASD childrenCerebellar influenceBehavioral developmentNeurodevelopmental disordersFunctional-structural relationshipsCerebellar structuresAutismYoung childhoodLiving brainCerebellumFunctional synchronizationThalamusSignificant lateralizationCerebral cortexTibolone treatment after traumatic brain injury exerts a sex-specific and Y chromosome-dependent regulation of methylation and demethylation enzymes and estrogen receptors in the cerebral cortex
Pinto-Benito D, Bautista-Abad A, Lagunas N, Ontiveros N, Ganchala D, Garcia-Segura L, Arevalo M, Grassi D. Tibolone treatment after traumatic brain injury exerts a sex-specific and Y chromosome-dependent regulation of methylation and demethylation enzymes and estrogen receptors in the cerebral cortex. Biochimica Et Biophysica Acta (BBA) - Molecular Basis Of Disease 2024, 1871: 167532. PMID: 39366643, DOI: 10.1016/j.bbadis.2024.167532.Peer-Reviewed Original ResearchLateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors
Morozov Y, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cerebral Cortex 2024, 34: bhae293. PMID: 39024157, PMCID: PMC11485267, DOI: 10.1093/cercor/bhae293.Peer-Reviewed Original ResearchConceptsNeural progenitor cellsProgenitor cellsVentricular zoneCerebral cortexBasolateral cell membraneApical anchorageProlonged neurogenesisMammalian cerebral cortexPrimary ciliaApical neural progenitorsCell membraneFraction of cellsNeural progenitorsStem cellsCerebral neurogenesisApical segmentsDevelopment of ciliaNuclear translocationMicrotubule organizing centerNeurogenesisCellsMacaque monkeysSpecies-specific differencesCortexBasal bodiesMassively parallel disruption of enhancers active in human neural stem cells
Geller E, Noble M, Morales M, Gockley J, Emera D, Uebbing S, Cotney J, Noonan J. Massively parallel disruption of enhancers active in human neural stem cells. Cell Reports 2024, 43: 113693. PMID: 38271204, PMCID: PMC11078116, DOI: 10.1016/j.celrep.2024.113693.Peer-Reviewed Original ResearchHuman neural stem cellsNeural stem cellsStem cellsProliferation phenotypeAssociated with neurodevelopmental disordersNeurodevelopmental disordersEnhanced disruptionHuman Accelerated RegionsNeural progenitor proliferationEffects of genetic variationHuman cortical evolutionProgenitor proliferationSelf-RenewalNeural progenitorsProgenitor populationsCerebral cortexChromatin interactionsHuman cerebral cortexNeural progenitor populationsGene regulationRegulatory elementsConserved regionGene disruptionGenetic variationRegulatory relationshipsHypercapnia Causes Injury of the Cerebral Cortex and Cognitive Deficits in Newborn Piglets
Fritz K, Sanidas G, Cardenas R, Ghaemmaghami J, Byrd C, Simonti G, Valenzuela A, Valencia I, Delivoria-Papadopoulos M, Gallo V, Koutroulis I, Dean T, Kratimenos P. Hypercapnia Causes Injury of the Cerebral Cortex and Cognitive Deficits in Newborn Piglets. ENeuro 2024, 11: eneuro.0268-23.2023. PMID: 38233145, PMCID: PMC10913040, DOI: 10.1523/eneuro.0268-23.2023.Peer-Reviewed Original ResearchConceptsNeonatal intensive care unitIntensive care unitCare unitCortical neuronsCerebral cortexCritically Ill NewbornsEnergy failureSevere lung injuryCortical neuronal injuryLong-term suppressionImpaired neurobehaviorExposure to hypercapniaNeurodevelopmental outcomesIll newbornsLung injuryLipid peroxidationElectroencephalogram frequencyNeuronal injuryPersistent dysregulationDeoxyribonucleic acid fragmentationAssociated with changesNewbornsEffect of HCHypercapniaProapoptotic signalingSynaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling
Zhang D, Ruan J, Peng S, Li J, Hu X, Zhang Y, Zhang T, Ge Y, Zhu Z, Xiao X, Zhu Y, Li X, Li T, Zhou L, Gao Q, Zheng G, Zhao B, Li X, Zhu Y, Wu J, Li W, Zhao J, Ge W, Xu T, Jia J. Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling. Nature Neuroscience 2024, 27: 232-248. PMID: 38168932, PMCID: PMC10849963, DOI: 10.1038/s41593-023-01515-0.Peer-Reviewed Original ResearchConceptsArteriolar smooth muscle cellsSmooth muscle cellsNeurovascular couplingPrevent Ca2+ overloadMuscle cellsNMDA receptor subunit 1Cerebral neurovascular couplingCa2+ overloadMouse cerebral cortexGluN1 subunitGlutamatergic axonsArteriolar constrictionSpreading depolarizationCerebral ischemiaCell-type specificityFunctional hyperemiaCerebral cortexPostsynaptic dendritesBrain atrophyCell junctionsArteriolesBrain functionAxonsBrainCells
2023
Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior
Benisty H, Barson D, Moberly A, Lohani S, Tang L, Coifman R, Crair M, Mishne G, Cardin J, Higley M. Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior. Nature Neuroscience 2023, 27: 148-158. PMID: 38036743, PMCID: PMC11316935, DOI: 10.1038/s41593-023-01498-y.Peer-Reviewed Original ResearchConceptsFunctional connectivitySpontaneous behaviorCortical networksCortical network activityTime-varying functional connectivityFunctional magnetic resonanceCerebral cortexAwake miceDynamic functional connectivityAwake animalsNeighboring neuronsPatterned activityDistinct behavioral statesTwo-photon microscopyNeural activityCortical signalsBehavioral statesCortexNetwork activityCortical dynamicsMagnetic resonancePositive allosteric modulators of the α7 nicotinic acetylcholine receptor: SAR investigation around PNU-120596
Acker B, Badescu V, Berkenpas M, Groppi V, Hajós M, Higdon N, Hurst R, Jacobsen E, Margolis B, McWhorter W, Myers J, Piotrowski D, Rogers B, Sarapa D, Vetman T, Walker D, Wall T, Wilhite D, Wishka D, Xu W, Yates K. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor: SAR investigation around PNU-120596. Bioorganic & Medicinal Chemistry Letters 2023, 93: 129433. PMID: 37557923, DOI: 10.1016/j.bmcl.2023.129433.Peer-Reviewed Original ResearchConceptsΑ7 nicotinic acetylcholine receptorNicotinic acetylcholine receptorsPositive allosteric modulatorsAcetylcholine receptorsPNU-120596Powerful positive allosteric modulatorAllosteric modulatorsRat hippocampal neuronsPresence of acetylcholineDose-dependent mannerLigand-gated ion channelsCerebral cortexRat modelHippocampal neuronsSynaptic transmissionSensory gatingReceptorsEnhanced potencyIon channelsUnique biologyInitial structure-activity relationshipsSAR investigationCompound 16Structure-activity relationshipsThalamusSpatiotemporal features of neurovascular (un)coupling with stimulus-induced activity and hypercapnia challenge in cerebral cortex and olfactory bulb
James S, Sanggaard S, Akif A, Mishra S, Sanganahalli B, Blumenfeld H, Verhagen J, Hyder F, Herman P. Spatiotemporal features of neurovascular (un)coupling with stimulus-induced activity and hypercapnia challenge in cerebral cortex and olfactory bulb. Cerebrovascular And Brain Metabolism Reviews 2023, 43: 1891-1904. PMID: 37340791, PMCID: PMC10676132, DOI: 10.1177/0271678x231183887.Peer-Reviewed Original ResearchConceptsVasodilatory responseCerebral cortexNeurovascular couplingOlfactory bulbNeuronal activityBrief sensory stimuliRegional neurovascular couplingStimulus-induced activityHypercapnia challengeVascular toneNeuronal deactivationHemodynamic responseNeuronal excitabilityNeuronal responsesCalcium transientsBrain functionHemodynamic signalsSensory stimuliVasodilationHypercapniaCortexMiceCareful appraisalStimuliMetabolic wasteHigh-resolution visualization of pial surface vessels by flattened whole mount staining
Xu Y, Zhang J, Lee H, Zhang G, Bai Y, Simons M. High-resolution visualization of pial surface vessels by flattened whole mount staining. IScience 2023, 26: 106467. PMID: 37020957, PMCID: PMC10067958, DOI: 10.1016/j.isci.2023.106467.Peer-Reviewed Original ResearchBlood vesselsCerebral vasculatureWhole cerebral cortexCerebral blood vesselsParticular blood vesselCentral nervous system researchCLARITY technologyCerebral cortexStroke settingsCerebral vesselsWhole-mount techniqueDisease settingsEndothelial proliferationNervous system researchPostnatal developmentTherapeutic developmentWhole-mount stainingVasculatureVesselsMount stainingMount techniqueConfocal imagingNormal developmentHigh-resolution visualizationImagingStructural and functional asymmetry of the neonatal cerebral cortex
Williams L, Fitzgibbon S, Bozek J, Winkler A, Dimitrova R, Poppe T, Schuh A, Makropoulos A, Cupitt J, O’Muircheartaigh J, Duff E, Cordero-Grande L, Price A, Hajnal J, Rueckert D, Smith S, Edwards A, Robinson E. Structural and functional asymmetry of the neonatal cerebral cortex. Nature Human Behaviour 2023, 7: 942-955. PMID: 36928781, DOI: 10.1038/s41562-023-01542-8.Peer-Reviewed Original ResearchConceptsCortical asymmetryHealthy term-born neonatesNeonatal cerebral cortexTerm-born neonatesTerm-equivalent ageHealthy young adultsHuman Connectome ProjectPreterm birthPreterm neonatesNeonatal cortexCerebral cortexTerm cohortFunctional magnetic resonance imagesMagnetic resonance imagesConnectome ProjectBrain asymmetryYoung adultsSignificant differencesNeonatesResonance imagesFunctional asymmetryCortexBirthBiological sexCohortMolecular and cellular mechanisms of human cortical connectivity
Luria V, Ma S, Shibata M, Pattabiraman K, Sestan N. Molecular and cellular mechanisms of human cortical connectivity. Current Opinion In Neurobiology 2023, 80: 102699. PMID: 36921362, DOI: 10.1016/j.conb.2023.102699.Peer-Reviewed Original ResearchAssociation of lesion location with post-stroke depression in China: a systematic review and meta-analysis.
Luo X, Fang W, Ji J, Zhang Y, Garcia-Milian R, Wang Z, Tan Y, Wang S, Wang X, Guo X, Luo X. Association of lesion location with post-stroke depression in China: a systematic review and meta-analysis. EC Psychology And Psychiatry 2023, 12: 34-45. PMID: 36913221, PMCID: PMC9997510.Peer-Reviewed Original ResearchPost-stroke depressionIncidence of PSDType of strokeCerebral cortexLesion locationOccurrence of PSDBrain lesion locationLeft hemisphereMental health conditionsDifferent brain regionsHemorrhagic strokeChinese patientsHigh riskAnterior cortexPSD incidenceSystematic reviewBrain regionsPSD occurrenceStrokePosterior cortexCortexHealth conditionsSystematic searchRight hemisphereIncidence
2022
Role of intracortical neuropil growth in the gyrification of the primate cerebral cortex
Rash B, Arellano J, Duque A, Rakic P. Role of intracortical neuropil growth in the gyrification of the primate cerebral cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 120: e2210967120. PMID: 36574666, PMCID: PMC9910595, DOI: 10.1073/pnas.2210967120.Peer-Reviewed Original ResearchConceptsOuter subventricular zoneSubcortical white matterCerebral cortexWhite matterFormation of gyriPrimate cerebral cortexMammalian cerebral cortexMarkers of proliferationCortical malformationsCortical plateGlial cellsGyral developmentSubventricular zoneCortical neurogenesisFetal developmentVentricular zoneCortical foldingNeuronal progenitorsGyrificationNeuronal growthNeuropil growthPrimary gyriCortexNeurodevelopmental disordersGyrusBeta-blockers and Other Adrenergic Antagonists Within The Integrated Neurorehabilitation and Neuropsychological Testing Setting
Benitez D, Rivera R, Carballea D. Beta-blockers and Other Adrenergic Antagonists Within The Integrated Neurorehabilitation and Neuropsychological Testing Setting. Archives Of Physical Medicine And Rehabilitation 2022, 103: e6. DOI: 10.1016/j.apmr.2022.01.016.Peer-Reviewed Original ResearchTraumatic brain injuryNeuropsychological testingAdrenergic antagonistsBrain injuryCases of TBISedative-hypnotic agentsNeurorehabilitative interventionsCerebral cortexInclusion criteriaPharmacological interventionsCognitive impairmentPatientsSystematic reviewAntagonist agentsNeurorehabilitationGoogle ScholarBaseline performance levelsData synthesisScience DirectPeer-reviewed articlesInjuryAntagonistAnxiety symptomatologyCurrent literatureIndependent extractionRates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2-13C]/[1-13C]glucose infusion and 1H-[13C]NMR ex vivo
McNair LM, Mason GF, Chowdhury GM, Jiang L, Ma X, Rothman DL, Waagepetersen HS, Behar KL. Rates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2-13C]/[1-13C]glucose infusion and 1H-[13C]NMR ex vivo. Cerebrovascular And Brain Metabolism Reviews 2022, 42: 1507-1523. PMID: 35048735, PMCID: PMC9274856, DOI: 10.1177/0271678x221074211.Peer-Reviewed Original ResearchConceptsCerebral cortexThree-compartment metabolic modelBrain regionsAwake male ratsTime courseMultiple brain regionsAwake ratsMale ratsAwake humansNeurotransmitter cyclingBrain rateAnesthetized rodentsEx vivoRate of glutamateCortexHippocampusStriatumGlutamateRatsBlood plasmaCerebellumGlucose consumptionGlucose oxidationRapid euthanasiaCortical data
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply