2025
Divergent synaptic dynamics originate parallel pathways for computation and behavior in an olfactory circuit
Kim H, Santana G, Sancer G, Emonet T, Jeanne J. Divergent synaptic dynamics originate parallel pathways for computation and behavior in an olfactory circuit. Current Biology 2025 PMID: 40541186, DOI: 10.1016/j.cub.2025.05.051.Peer-Reviewed Original ResearchLateral horn neuronsPostsynaptic neuronsProjection neuronsDrosophila olfactory systemCalcium buffer EGTASpike thresholdOlfactory circuitsSensory processingOlfactory systemOdor attractivenessInformation streamsCentral circuitsCellular mechanismsSynaptic dynamicsSpecialized computersNeuronsSubtractive adaptationDepressionSynapsesComputerEfficient wayProcessing pathwayGain controlPresynaptic specializationsBehaviorTiming Matters: Lessons From Perinatal Neurogenesis in the Olfactory Bulb
Liberia T, Han K, Spence N, Meller S, Martin‐Lopez E, Greer C. Timing Matters: Lessons From Perinatal Neurogenesis in the Olfactory Bulb. The Journal Of Comparative Neurology 2025, 533: e70045. PMID: 40128105, PMCID: PMC11949412, DOI: 10.1002/cne.70045.Peer-Reviewed Original ResearchConceptsOlfactory bulbGranule cellsTiming of neurogenesisProjection neuronsCoding of odor informationSynaptic circuitsInhibitory granule cellsDendrites of projection neuronsLocal synaptic circuitsMitral cellsOdor processingSynaptic integrationPlexiform layerOdor informationAnatomical configurationLaminar distributionEmbryogenesis to adulthoodNeurogenesisSecondary dendritesMaturation patternGlomeruliNeuronsDevelopmental continuumCellsBulb
2024
Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking
Takagi S, Sancer G, Abuin L, Stupski S, Roman Arguello J, Prieto-Godino L, Stern D, Cruchet S, Álvarez-Ocaña R, Wienecke C, van Breugel F, Jeanne J, Auer T, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nature Communications 2024, 15: 7041. PMID: 39147786, PMCID: PMC11327376, DOI: 10.1038/s41467-024-50808-w.Peer-Reviewed Original ResearchConceptsOlfactory sensory neuronsPopulation expansionSpecies-specific expansionSensory neuronsProjection neuronsConnections of sensory neuronsOlfactory sensory neuron numbersSpecies-specific behaviorsD. sechelliaDrosophila sechelliaEcologically-relevantProportion of neuronsEnvironmental cuesMultigenic changesEvolutionary expansionIncreased synaptic connectivityFunctional impactPN sensitivityNeuronal adaptationOdor trackingNeuronsSechelliaLateral inhibitionInhibitionSpeciesInflammatory Response and Defects on Myelin Integrity in the Olfactory System of K18hACE2 Mice Infected with SARS-CoV-2
Martin-Lopez E, Brennan B, Mao T, Spence N, Meller S, Han K, Yahiaoui N, Wang C, Iwasaki A, Greer C. Inflammatory Response and Defects on Myelin Integrity in the Olfactory System of K18hACE2 Mice Infected with SARS-CoV-2. ENeuro 2024, 11: eneuro.0106-24.2024. PMID: 38834299, PMCID: PMC11185043, DOI: 10.1523/eneuro.0106-24.2024.Peer-Reviewed Original ResearchOlfactory bulbOlfactory epitheliumPiriform cortexOlfactory tractOlfactory systemSARS-CoV-2Projection neuronsMyelination defectsOlfactory sensory neuronsLateral olfactory tractLoss of olfactionRespiratory epithelial cellsLamina propria macrophagesSARS-CoV-2 infectionInfected SCDays of infectionIntegrity of myelinOlfactory dysfunctionInfected microgliaSensitive to infectionOlfactory deficitsSensory neuronsSustentacular cellsNasal cavityNeuronal conductionFunctionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons
Rajebhosale P, Ananth M, Kim R, Crouse R, Jiang L, López-Hernández G, Zhong C, Arty C, Wang S, Jone A, Desai N, Li Y, Picciotto M, Role L, Talmage D. Functionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons. ELife 2024, 13: e86581. PMID: 38363713, PMCID: PMC10928508, DOI: 10.7554/elife.86581.Peer-Reviewed Original ResearchBasolateral amygdalaCholinergic neuronsThreatening stimuliMemory recallPredator odorDefensive behaviorResponse to predator odorBasal forebrain cholinergic projection neuronsBasal forebrain of micePosterior substantia innominataForebrain of miceSource of cholinergic inputCholinergic basal forebrainIncreased intrinsic excitabilityCholinergic projection neuronsThreat memoryFoot shockAversive stimuliChemogenetic silencingCholinergic inputSubstantia innominataPopulation of cholinergic neuronsNucleus basalisIntrinsic excitabilityProjection neurons
2023
Operant Training for Highly Palatable Food Alters Translating Messenger RNA in Nucleus Accumbens D2 Neurons and Reveals a Modulatory Role of Ncdn
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn A, Greengard P, Flajolet M, Hervé D, Gambardella N, Roussarie J, Girault J. Operant Training for Highly Palatable Food Alters Translating Messenger RNA in Nucleus Accumbens D2 Neurons and Reveals a Modulatory Role of Ncdn. Biological Psychiatry 2023, 95: 926-937. PMID: 37579933, PMCID: PMC11059129, DOI: 10.1016/j.biopsych.2023.08.006.Peer-Reviewed Original ResearchStriatal projection neuronsNucleus accumbensPalatable foodProjection neuronsNAc neuronsD2-striatal projection neuronsWild-type miceMessenger RNAConditioning-induced changesSpine densityDopamine neuronsDopamine receptorsDownregulated genesD2 neuronsModulatory roleNAc dopamineDopamine DFood altersCompensatory mechanismsRegular foodNeuronsFeeding behaviorBehavioral responsesMRNA alterationsMiceα-Synuclein Pathology and Reduced Neurogenesis in the Olfactory System Affect Olfaction in a Mouse Model of Parkinson's Disease
Martin-Lopez E, Vidyadhara D, Liberia T, Meller S, Harmon L, Hsu R, Spence N, Brennan B, Han K, Yücel B, Chandra S, Greer C. α-Synuclein Pathology and Reduced Neurogenesis in the Olfactory System Affect Olfaction in a Mouse Model of Parkinson's Disease. Journal Of Neuroscience 2023, 43: 1051-1071. PMID: 36596700, PMCID: PMC9908323, DOI: 10.1523/jneurosci.1526-22.2022.Peer-Reviewed Original ResearchConceptsΑ-syn tg miceΑ-Syn pathologyOlfactory bulb neurogenesisProjection neuronsParkinson's diseaseOlfactory dysfunctionMutant α-synucleinOlfactory deficitsOlfactory pathwaySyn pathologyBehavioral deficitsMouse modelΑ-synucleinOB granule cellsΑ-synuclein pathologyOlfactory systemMonths of ageReduced neurogenesisFunctional deficitsPeriglomerular cellsMotor progressionPathologic changesMultiple symptomsSynaptic terminalsGranule cells
2022
Cellular diversity and gene expression profiles in the male and female brain of Aedes aegypti
Cui Y, Behura SK, Franz AWE. Cellular diversity and gene expression profiles in the male and female brain of Aedes aegypti. BMC Genomics 2022, 23: 119. PMID: 35144549, PMCID: PMC8832747, DOI: 10.1186/s12864-022-08327-9.Peer-Reviewed Original ResearchConceptsFemale brainMedulla neuronsCell clustersDimorphic behaviorsCell typesBrain cell typesSingle-nucleus RNA sequencingMonoaminergic neuronsProjection neuronsMosquito brainMale brainNeuronsKenyon cellsBrainYellow feverCell atlasCellular compositionGene expression profilesFemale mosquitoesGliaMosquito vectorsType compositionType proportionsRNA sequencingAdult males
2021
Disruption of NEUROD2 causes a neurodevelopmental syndrome with autistic features via cell-autonomous defects in forebrain glutamatergic neurons
Runge K, Mathieu R, Bugeon S, Lafi S, Beurrier C, Sahu S, Schaller F, Loubat A, Herault L, Gaillard S, Pallesi-Pocachard E, Montheil A, Bosio A, Rosenfeld JA, Hudson E, Lindstrom K, Mercimek-Andrews S, Jeffries L, van Haeringen A, Vanakker O, Van Hecke A, Amrom D, Küry S, Ratner C, Jethva R, Gamble C, Jacq B, Fasano L, Santpere G, Lorente-Galdos B, Sestan N, Gelot A, Giacuzz S, Goebbels S, Represa A, Cardoso C, Cremer H, de Chevigny A. Disruption of NEUROD2 causes a neurodevelopmental syndrome with autistic features via cell-autonomous defects in forebrain glutamatergic neurons. Molecular Psychiatry 2021, 26: 6125-6148. PMID: 34188164, PMCID: PMC8760061, DOI: 10.1038/s41380-021-01179-x.Peer-Reviewed Original ResearchConceptsLayer 5 neuronsKO miceForebrain glutamatergic neuronsTranscription factor NeuroD2Forebrain excitatory neuronsNeurodevelopmental disordersAutism spectrum disorderCortical projection neuronsPatch-clamp recordingsIntellectual disabilitySocial interaction deficitsSpontaneous seizuresCerebral cortexGlutamatergic neuronsSpine densityProjection neuronsIntrinsic excitabilityNervous system developmentNeuronal excitabilityExcitatory neuronsJuvenile miceBulk RNA sequencingSynaptic functionNeurobehavioral featuresDysregulated expressionChanges in Representation of Thalamic Projection Neurons within Prefrontal-Thalamic-Hippocampal Circuitry in a Rat Model of Third Trimester Binge Drinking
Gursky ZH, Klintsova AY. Changes in Representation of Thalamic Projection Neurons within Prefrontal-Thalamic-Hippocampal Circuitry in a Rat Model of Third Trimester Binge Drinking. Brain Sciences 2021, 11: 323. PMID: 33806485, PMCID: PMC8001051, DOI: 10.3390/brainsci11030323.Peer-Reviewed Original ResearchFetal alcohol spectrum disordersAlcohol exposureMedial prefrontal cortexVentral hippocampusProjection neuronsShort-term alcohol exposureLong-Evans rat pupsPrefrontal cortexBrain growth spurtThalamic projection neuronsDevelopmental alcohol exposureAlcohol spectrum disordersThalamic nucleus reuniensExecutive functioningRE neuronsNeuron lossThird trimesterThalamic connectivityRat modelRat pupsHippocampal circuitryRodent modelsBinge drinkingNucleus reuniensNeuron number
2020
Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease
Arnsten AFT, Datta D, Del Tredici K, Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease. Alzheimer's & Dementia 2020, 17: 115-124. PMID: 33075193, PMCID: PMC7983919, DOI: 10.1002/alz.12192.Peer-Reviewed Original ResearchConceptsAbnormal tau phosphorylationTau pathologyProjection neuronsTau phosphorylationAssociation cortexAlzheimer's diseaseBrain tau pathologySporadic Alzheimer's diseaseSusceptible microenvironmentCalcium dysregulationVulnerable neuronsAβ plaquesAβ productionSporadic formsSAD pathologyRhesus monkeysAbnormal phosphorylationPathological eventsDiseaseAβ oligomersPathologyNeuronsVicious cycleCortexTauTwo-Photon Optogenetic Stimulation of Drosophila Neurons
Fişek M, Jeanne JM. Two-Photon Optogenetic Stimulation of Drosophila Neurons. Methods In Molecular Biology 2020, 2191: 97-108. PMID: 32865741, DOI: 10.1007/978-1-0716-0830-2_7.Peer-Reviewed Original ResearchConnectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision
Park SJ, Lieberman EE, Ke JB, Rho N, Ghorbani P, Rahmani P, Jun NY, Lee HL, Kim IJ, Briggman KL, Demb JB, Singer JH. Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. ELife 2020, 9: e56077. PMID: 32412412, PMCID: PMC7228767, DOI: 10.7554/elife.56077.Peer-Reviewed Original ResearchConceptsAII amacrine cellsProjection neuronsSingle interneuron typeConnectomic analysisBipolar cell pathwaysNovel neural circuitGABAergic cellsAmacrine cellsCentral neuronsGanglion cellsSynaptic layersRetinal circuitsInterneuron typesSurround inhibitionMouse retinaNight visionON responseExcitatory centerOptogenetic analysesNeural circuitsInhibitory surroundCell pathwaysRod photoreceptorsReceptive fieldsRb pathway
2019
Corticostriatal plasticity in the nucleus accumbens core
Bamford NS, Wang W. Corticostriatal plasticity in the nucleus accumbens core. Journal Of Neuroscience Research 2019, 97: 1559-1578. PMID: 31298422, PMCID: PMC6801067, DOI: 10.1002/jnr.24494.Peer-Reviewed Original ResearchConceptsPrefrontal cortical projectionsCortical projectionsNAc coreDrug reinstatementSaline-treated miceSpiny projection neuronsMotor learningNew therapeutic targetsNucleus accumbens coreUse of amphetaminesStriatal glutamateGlutamate releaseCortical stimulationPresynaptic depressionProjection neuronsStriatal circuitryD1 receptorsDrug challengeLocomotor sensitizationMale miceCorticostriatal plasticityGlutamatergic boutonsDopamine releaseNucleus accumbensParadoxical excitationEmbryonic and postnatal development of mouse olfactory tubercle
Martin-Lopez E, Xu C, Liberia T, Meller SJ, Greer CA. Embryonic and postnatal development of mouse olfactory tubercle. Molecular And Cellular Neuroscience 2019, 98: 82-96. PMID: 31200100, PMCID: PMC11993912, DOI: 10.1016/j.mcn.2019.06.002.Peer-Reviewed Original ResearchConceptsOlfactory tubercleVentral striatumOlfactory bulb projection neuronsPrimary afferent inputTyrosine hydroxylase expressionLateral ganglionic eminenceDopamine reward systemCNPase stainingVentral medial regionDopaminergic innervationProjection neuronsStriatal neuronsVentral tegmentumAfferent inputDopaminergic inputLaminar distributionMedial gradientHydroxylase expressionNucleus accumbensGanglionic eminencePostnatal developmentE11-E15OT cellsVentral lateral ganglionic eminencePostnatal stages
2018
A resource for the Drosophila antennal lobe provided by the connectome of glomerulus VA1v
Horne JA, Langille C, McLin S, Wiederman M, Lu Z, Xu CS, Plaza SM, Scheffer LK, Hess HF, Meinertzhagen IA. A resource for the Drosophila antennal lobe provided by the connectome of glomerulus VA1v. ELife 2018, 7: e37550. PMID: 30382940, PMCID: PMC6234030, DOI: 10.7554/elife.37550.Peer-Reviewed Original Research
2017
MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice
Mitchell A, Javidfar B, Pothula V, Ibi D, Shen E, Peter C, Bicks L, Fehr T, Jiang Y, Brennand K, Neve R, Gonzalez-Maeso J, Akbarian S. MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Molecular Psychiatry 2017, 23: 123-132. PMID: 28115742, PMCID: PMC5966823, DOI: 10.1038/mp.2016.254.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainChromatin ImmunoprecipitationCognition DisordersComputational BiologyDisease Models, AnimalEpigenomicsGene Expression RegulationGreen Fluorescent ProteinsHistonesMEF2 Transcription FactorsMiceMice, Inbred C57BLMice, KnockoutNerve Tissue ProteinsNeuronsPolymorphism, Single NucleotideSchizophreniaTransduction, GeneticConceptsTherapeutic potentialPrefrontal projection neuronsNeuron-specific promoterUnexplored therapeutic potentialProjection neuronsDrug challengeDisease casesRelated disordersRisk architecturePrefrontal cortexSchizophreniaSingle nucleotide polymorphismsCognitive performancePsychiatric Genomics ConsortiumNeuronal genomeH3K4 hypermethylationRisk lociCognitive enhancement
2016
Axonal branching in lateral olfactory tract is promoted by Nogo signaling
Iketani M, Yokoyama T, Kurihara Y, Strittmatter SM, Goshima Y, Kawahara N, Takei K. Axonal branching in lateral olfactory tract is promoted by Nogo signaling. Scientific Reports 2016, 6: 39586. PMID: 28000762, PMCID: PMC5175167, DOI: 10.1038/srep39586.Peer-Reviewed Original ResearchConceptsLateral olfactory tractCultured OB neuronsOB neuronsCollateral branchesAxonal branchingOlfactory bulbOlfactory tractAxonal bundlesMajor projection neuronsReceptor 1 antagonistKnockdown of NogoCollateral formationProjection neuronsPrimary axonsNogo signalingMitral cellsMiceNeuronsExpression levelsAbnormal increaseTractNogoAntagonistAxonsAdolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome
Whitaker KJ, Vértes PE, Romero-Garcia R, Váša F, Moutoussis M, Prabhu G, Weiskopf N, Callaghan MF, Wagstyl K, Rittman T, Tait R, Ooi C, Suckling J, Inkster B, Fonagy P, Dolan RJ, Jones PB, Goodyer IM, Bullmore E, Goodyer I, Bullmore E, Dolan R, Fonagy P, Jones P, Fletcher P, Suckling J, Weiskopf N, Fearon P, Inkster B, Prabhu G, Bernal-Casas D, Eldar E, Ganguly T, Hauser T, Ioannidis K, Lewis G, Mita A, Moutoussis M, Neufeld S, Polek-MacDaeid E, Romero-Garcia R, St Clair M, Tait R, Toseeb U, van Harmelen A, Vértes P, Whitaker K, Will G, Ziegler G, Zimbron J, Haarsma J, Davies S, Griffin J, Hart M, Váša F, Wagstyl K, Ooi C, Widmer B, Alrumaithi A, Birt S, Cleridou K, Dadabhoy H, Firkins A, Granville S, Harding E, Hopkins A, Isaacs D, King J, Knight C, Kokorikou D, Maurice C, McIntosh C, Memarzia J, Mills H, O’Donnell C, Pantaleone S, Scott J, Stribling A, Bhatti J, Hubbard N, Ilicheva N, Kentell M, Wallis B, Villis L. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 9105-9110. PMID: 27457931, PMCID: PMC4987797, DOI: 10.1073/pnas.1601745113.Peer-Reviewed Original ResearchConceptsCortical myelinationCortical areasAssociation cortical areasPrimary cortical areasBrain anatomical networksAge-related increaseCourse of adolescenceHuman brain maturationIntracortical myelinationProjection neuronsSchizophrenia-related genesCortical thicknessHigh incidenceBrain maturationAssociation cortexHuman brain structureHuman brain connectomeMyelinationBrain structuresCortical consolidationSame transcriptional profileAnatomical networksGene expression profilesBehavioral changesAdolescenceProjection-Specific Visual Feature Encoding by Layer 5 Cortical Subnetworks
Lur G, Vinck MA, Tang L, Cardin JA, Higley MJ. Projection-Specific Visual Feature Encoding by Layer 5 Cortical Subnetworks. Cell Reports 2016, 14: 2538-2545. PMID: 26972011, PMCID: PMC4805451, DOI: 10.1016/j.celrep.2016.02.050.Peer-Reviewed Original ResearchConceptsNeocortical sensory areasVisual response propertiesPrimary visual cortexVivo calcium imagingDownstream targetsCorticocortical cellsCorticostriatal cellsProjection neuronsRelevant downstream targetsCorticotectal cellsAfferent informationCortical subnetworksCC cellsVisual cortexCalcium imagingSensory areasSubcortical structuresLayer 5CT cellsDistinct subpopulationsSensory informationBroad tuningResponse propertiesCellsFunctional subnetworks
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply