2019
microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney
Srivastava SP, Hedayat A, Kanasaki K, Goodwin JE. microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney. Frontiers In Pharmacology 2019, 10: 904. PMID: 31474862, PMCID: PMC6707424, DOI: 10.3389/fphar.2019.00904.Peer-Reviewed Original ResearchMesenchymal transitionExcess extracellular matrixDiverse biological processesGrowth factor β receptorNon-coding nucleotidesMiR-29Fibrotic disease statesRole of microRNAsEndothelial cell homeostasisEpithelial cellsMicroRNA biosynthesisMesenchymal programGrowth factor βAberrant regulationEndothelial cellsCrosstalk mechanismsCell homeostasisBiological processesM2 phenotype macrophagesDipeptidyl peptidase-4Extracellular matrixBone marrow-derived monocytesIntegrin β1Novel therapeutic targetMesenchymal activation
2018
Impact of Transcriptomics on Our Understanding of Pulmonary Fibrosis
Vukmirovic M, Kaminski N. Impact of Transcriptomics on Our Understanding of Pulmonary Fibrosis. Frontiers In Medicine 2018, 5: 87. PMID: 29670881, PMCID: PMC5894436, DOI: 10.3389/fmed.2018.00087.Peer-Reviewed Original ResearchTranscriptomic studiesImpact of transcriptomicsGenome-scale profilingSingle-cell RNAseqRole of microRNAsIdiopathic pulmonary fibrosisNovel genesTranscriptomic analysisEpithelial genesIPF lungsRNA transcriptsDevelopmental pathwaysWnt pathwayBulk tissueMolecular analysisPulmonary fibrosisSpatial heterogeneityAnimal modelsTranscriptomicsGenesLethal fibrotic lung diseaseHuman IPF lungsImpact of lungPathwayFibrotic lung disease
2016
The emerging role of microRNAs in hypoxia-induced pulmonary hypertension
Mohsenin V. The emerging role of microRNAs in hypoxia-induced pulmonary hypertension. Sleep And Breathing 2016, 20: 1059-1067. PMID: 27154628, DOI: 10.1007/s11325-016-1351-y.Peer-Reviewed Original ResearchConceptsPulmonary arterial hypertensionHypoxia-induced pulmonary hypertensionPulmonary hypertensionArterial hypertensionHeart failureRole of microRNAsMechanism of PHPulmonary arterial blood pressurePulmonary arterial smooth muscle cellsDevelopment of PHIdiopathic pulmonary arterial hypertensionChronic obstructive lung diseasePathogenesis of PHArterial smooth muscle cellsRight heart failureRight ventricular dysfunctionPoor prognostic signArterial blood pressureCongestive heart failureObstructive lung diseaseSleep-disordered breathingSetting of hypoxiaAberrant vascular remodelingQuality of lifeSmooth muscle cellsNanoparticle delivery of miR-223 to attenuate macrophage fusion
Moore LB, Sawyer AJ, Saucier-Sawyer J, Saltzman WM, Kyriakides TR. Nanoparticle delivery of miR-223 to attenuate macrophage fusion. Biomaterials 2016, 89: 127-135. PMID: 26967647, PMCID: PMC4924476, DOI: 10.1016/j.biomaterials.2016.02.036.Peer-Reviewed Original ResearchConceptsForeign body giant cellsMiR-223 mimicsMiR-223Foreign body responseMacrophage fusionSubsequent cytoskeletal rearrangementMiR microarrayKO miceRole of microRNAsMolecular mediatorsNegative regulatorGiant cellsPrimary macrophagesFusion of macrophagesNovel mediatorPrecise mechanismFusion-competent stateTherapeutic inhibitorsBody responseMacrophagesNanoparticle deliveryImplant modelMediatorsEventual encapsulationPost-transcriptional levelNovel Mechanisms of Disease: Network Biology and MicroRNA Signaling in Pulmonary Hypertension
Fares W, Pandit K, Kaminski N. Novel Mechanisms of Disease: Network Biology and MicroRNA Signaling in Pulmonary Hypertension. 2016, 123-133. DOI: 10.1007/978-3-319-23594-3_7.Peer-Reviewed Original ResearchPulmonary arterial hypertensionSmall non-coding RNAsNon-coding RNAsRole of microRNAsNumerous genesNetwork biologyGene expressionPhysiological processesVascular remodeling diseaseArtery smooth muscle cellsPulmonary artery smooth muscle cellsProgression of PAHMicroRNA signallingNovel mechanismMicroRNAsSmooth muscle cellsRight heart failureMuscle cellsArterial hypertensionPulmonary hypertensionHeart failureEndothelial cellsArterial remodelingHistological changesTherapeutic strategies
2015
The role of microRNAs in coronary artery disease: From pathophysiology to diagnosis and treatment
Economou EK, Oikonomou E, Siasos G, Papageorgiou N, Tsalamandris S, Mourouzis K, Papaioanou S, Tousoulis D. The role of microRNAs in coronary artery disease: From pathophysiology to diagnosis and treatment. Atherosclerosis 2015, 241: 624-633. PMID: 26117399, DOI: 10.1016/j.atherosclerosis.2015.06.037.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsApoptosisAtherosclerosisBiomarkersBlood PlateletsCell MovementCoronary Artery DiseaseDisease ProgressionEndothelium, VascularGene Expression RegulationHumansLipoproteins, HDLLipoproteins, LDLMiceMicroRNAsMonocytesMuscle, Smooth, VascularMyocardial InfarctionNeovascularization, PathologicOligonucleotidesReperfusion InjuryStem CellsConceptsCoronary artery diseaseDevelopment of atherosclerosisArtery diseaseCoronary artery disease progressionPathogenesis of atherosclerosisStudy of miRNAsMyocardial infarctionDisease progressionSpecific miRNA expression patternsTherapeutic approachesRole of microRNAsPreventive opportunitiesDiagnostic biomarkersRelated conditionsAtherosclerosisMiRNA expression patternsDiseaseNon-coding RNA moleculesRole of miRNAsIntercellular communicationIntracellular regulatorsExpression patternsMiRNAsPost-transcriptional levelGene expression
2013
VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis
Takyar S, Vasavada H, Zhang JG, Ahangari F, Niu N, Liu Q, Lee CG, Cohn L, Elias JA. VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis. Journal Of Experimental Medicine 2013, 210: 1993-2010. PMID: 24043765, PMCID: PMC3782056, DOI: 10.1084/jem.20121200.Peer-Reviewed Original ResearchConceptsVascular endothelial growth factorTh2 inflammationLung endotheliumMiR-1Th2-mediated lung inflammationIL-13 overexpressionLung-specific overexpressionHouse dust mitePotential therapeutic targetEndothelial growth factorMiR-1 expressionLung inflammationInflammatory disordersDust miteInflammation modelInflammatory responseIntranasal deliveryRole of microRNAsTherapeutic targetInflammationP-selectinGrowth factorVivo knockdownEffector pathwaysEndotheliumMicromanaging microRNAs: using murine models to study microRNAs in lung fibrosis
Cardenas C, Kaminski N, Kass DJ. Micromanaging microRNAs: using murine models to study microRNAs in lung fibrosis. Drug Discovery Today Disease Models 2013, 10: e145-e151. PMID: 25328532, PMCID: PMC4201640, DOI: 10.1016/j.ddmod.2012.11.003.Peer-Reviewed Original ResearchIdiopathic pulmonary fibrosisLung fibrosisAlveolar cell hyperplasiaInterstitial lung diseaseExtensive phenotypic changesRole of microRNAsMyofibroblast fociPulmonary fibrosisCell hyperplasiaLung diseaseLung healthUnknown etiologyMurine modelTranscriptional programmingAnimal modelsFibrosisPhenotypic changesPathological processesDiseaseExtracellular matrixMicroRNAsLatest insightsSpecific patternsHyperplasiaLung
2012
An In Vivo Functional Screen Uncovers miR-150-Mediated Regulation of Hematopoietic Injury Response
Adams BD, Guo S, Bai H, Guo Y, Megyola CM, Cheng J, Heydari K, Xiao C, Reddy EP, Lu J. An In Vivo Functional Screen Uncovers miR-150-Mediated Regulation of Hematopoietic Injury Response. Cell Reports 2012, 2: 1048-1060. PMID: 23084747, PMCID: PMC3487471, DOI: 10.1016/j.celrep.2012.09.014.Peer-Reviewed Original ResearchConceptsMiR-150Injury responseBone marrow transplant modelCareful clinical managementHematopoietic suppressionTransplant modelPeripheral bloodHematopoietic recoveryRecipient miceClinical managementAssociated impairmentRole of microRNAsMyeloid cellsHeterozygous knockoutProgenitor cellsClonogenic potentialMajor blood lineagesNormal tissue physiologyHematopoietic stemTissue physiologyC-MybTreatmentMicroRNAsFunction screenCells
2011
The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism
Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C. The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism. Annual Review Of Nutrition 2011, 31: 49-63. PMID: 21548778, PMCID: PMC3612434, DOI: 10.1146/annurev-nutr-081810-160756.Peer-Reviewed Original ResearchConceptsGene expressionSterol response element-binding proteinMiR-33Fatty acid β-oxidationElement-binding proteinFatty acid homeostasisResponse element-binding proteinRole of microRNAsCholesterol effluxIntronic miRNALipid metabolismRNA bindsPosttranscriptional controlUntranslated regionAbundant miRNABiological processesElegant mechanismMiR-122Lipid homeostasisΒ-oxidationAcid homeostasisCell phenotypeMiRNAsHepatic lipid metabolismMicroRNAsMicroRNAs in idiopathic pulmonary fibrosis
Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Translational Research 2011, 157: 191-199. PMID: 21420029, DOI: 10.1016/j.trsl.2011.01.012.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisIPF lungsPulmonary fibrosisLung fibrosisMiR-155Vascular endothelial growth factor (VEGF) pathwayEndothelial growth factor pathwayLethal fibrotic lung diseaseFibrotic lung diseaseMiR-29Upregulated miR-155Growth factor-β1Epithelial-mesenchymal transitionGrowth factor pathwaysLung epithelial cellsLung diseaseProfibrotic effectsBleomycin modelRole of microRNAsTherapeutic targetFactor-β1FibrosisMesenchymal transitionFactor pathwayLet-7 family members
2009
microRNA Expression during Trophectoderm Specification
Viswanathan SR, Mermel CH, Lu J, Lu CW, Golub TR, Daley GQ. microRNA Expression during Trophectoderm Specification. PLOS ONE 2009, 4: e6143. PMID: 19582159, PMCID: PMC2702083, DOI: 10.1371/journal.pone.0006143.Peer-Reviewed Original ResearchConceptsEmbryonic stem cellsTrophectoderm specificationPreimplantation developmentMurine embryosFirst cell fate decisionCell fate decisionsTight developmental regulationStem cellsInner cell massCandidate miRNAsNumber of miRNAsStages of embryogenesisRole of microRNAsMiRNA expression changesMammalian developmentTranscription factorsDevelopmental regulationEctopic expressionTarget genesExpression changesTrophectodermal cellsTrophectodermMiRNA expressionFunctional roleMiRNAsRegulating the activity of microRNPs in vertebrate cells
Steitz J, Vasudevan S, Cazalla D. Regulating the activity of microRNPs in vertebrate cells. The FASEB Journal 2009, 23: 90.3-90.3. DOI: 10.1096/fasebj.23.1_supplement.90.3.Peer-Reviewed Original ResearchAU-rich sequencesPost-transcriptional controlAssociation of Ago2Role of microRNAsProtein FXR1Translation regulationContact-inhibited cellsVertebrate cellsTranslation upregulationTranslation activationTranslational efficiencyNegative regulatorCell cycleSpecific microRNAsQuiescent cellsS phaseH. saimiriEffector moleculesCell growthMicroRNPsXenopus oocytesMicroRNAsAgo2FXR1Monocyte differentiation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply