2018
PDTM-01. GERMLINE GENETIC PREDISPOSITION TO PEDIATRIC GLIOMA
Muskens I, Walsh K, de Smith A, Morimoto L, Metayer C, Ma X, Wiemels J. PDTM-01. GERMLINE GENETIC PREDISPOSITION TO PEDIATRIC GLIOMA. Neuro-Oncology 2018, 20: vi203-vi203. PMCID: PMC6217152, DOI: 10.1093/neuonc/noy148.843.Peer-Reviewed Original ResearchPediatric gliomasGenetic predispositionCancer-related genesReceptor tyrosine kinasesPediatric brain tumorsGermline genetic predispositionHigh-grade gliomasPediatric glioma patientsRare germline variantsWhole-exome sequencingRare germline mutationsExome Aggregation Consortium databaseAstrocytoma patientsGlioma patientsBrain tumorsSpecific receptor tyrosine kinasesGrade gliomasHigh mortalityNerve cellsGermline mutationsGermline variantsGliomasTyrosine kinase proteinTranslational implicationsConsortium database
2015
Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines
Popovic M, Vogt K, Holthoff K, Konnerth A, Salzberg BM, Grinvald A, Antic SD, Canepari M, Zecevic D. Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines. Advances In Experimental Medicine And Biology 2015, 859: 57-101. PMID: 26238049, PMCID: PMC5671121, DOI: 10.1007/978-3-319-17641-3_3.Peer-Reviewed Original ResearchConceptsIndividual neuronsMembrane potential changesVoltage-sensitive dye recordingAction potential initiationIndividual dendritic spinesSite of originAxon collateralsIndividual nerve cellsMembrane potential transientsVoltage-sensitive dyeDendritic spinesRegional electrical propertiesDendritic treeNerve cellsNeuronal processesSingle axonsPotential initiationComplex operational unitsBehavioral modificationNeuronal network analysisNeuronsInput-output functionMultisite recordings
2014
An Augmented Two-Layer Model Captures Nonlinear Analog Spatial Integration Effects in Pyramidal Neuron Dendrites
Jadi MP, Behabadi BF, Poleg-Polsky A, Schiller J, Mel BW. An Augmented Two-Layer Model Captures Nonlinear Analog Spatial Integration Effects in Pyramidal Neuron Dendrites. Proceedings Of The IEEE 2014, 102: 782-798. PMID: 25554708, PMCID: PMC4279447, DOI: 10.1109/jproc.2014.2312671.Peer-Reviewed Original Research
2013
Role of emergent neural activity in visual map development
Ackman JB, Crair MC. Role of emergent neural activity in visual map development. Current Opinion In Neurobiology 2013, 24: 166-175. PMID: 24492092, PMCID: PMC3957181, DOI: 10.1016/j.conb.2013.11.011.Peer-Reviewed Original ResearchConceptsRetinal wavesNeural activitySpontaneous activityNormal visual functionOnset of visionVisual functionGestational periodCalcium influxFunctional visionLong gestational periodNervous systemVisual circuitsNeurotransmitter releaseNerve cellsAssociative circuitsCircuit connectivitySensory-motor systemEye openingFunctional developmentVisuomotor learningSpecific spatiotemporal patternsSpontaneous patternsExcitable cellsOnsetFuture studies
2010
Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines
Canepari M, Popovic M, Vogt K, Holthoff K, Konnerth A, Salzberg B, Grinvald A, Antic S, Zecevic D. Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines. 2010, 25-41. DOI: 10.1007/978-1-4419-6558-5_3.Peer-Reviewed Original ResearchIndividual neuronsMembrane potential changesVoltage-sensitive dye recordingAction potential initiationIndividual dendritic spinesSite of originAxon collateralsIndividual nerve cellsMembrane potential transientsVoltage-sensitive dyeDendritic spinesRegional electrical propertiesDendritic treeNerve cellsNeuronal processesSingle axonsPotential initiationComplex operational unitsBehavioral modificationNeuronal network analysisNeuronsInput-output functionMultisite recordingsSubthreshold eventsSpine
2002
SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly
Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Südhof T. SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly. Science 2002, 297: 1525-1531. PMID: 12202822, DOI: 10.1126/science.1072356.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBrainBrain ChemistryCell Adhesion MoleculesCell Adhesion Molecules, NeuronalCell LineCoculture TechniquesExocytosisHumansImmunoglobulinsMolecular Sequence DataNeuronsProsencephalonProtein Structure, TertiaryRatsReceptors, AMPARecombinant Fusion ProteinsSequence Homology, Amino AcidSynapsesSynaptic TransmissionTransfectionTumor Suppressor ProteinsConceptsSynapse assemblyHomophilic cell adhesion moleculeDomain-containing proteinsPDZ domain proteinsNonneuronal cellsAdhesion moleculesSynaptic adhesion moleculesImmunoglobulin domain-containing proteinsGlutamate receptorsCoordinated assemblyCytoplasmic tailCell adhesion moleculeGlutamatergic synaptic transmissionSynapse formationPostsynaptic specializationsPostsynaptic responsesHippocampal neuronsSynaptic transmissionProteinNerve cellsAssemblyCellsExpressionTight attachmentNeurons
2001
Title Pages
B.Levitan I, Kaczmarek L. Title Pages. 2001, i-iv. DOI: 10.1093/oso/9780195145236.002.0001.Peer-Reviewed Original ResearchElectrical activityAppropriate synaptic connectionsAction of neurotransmittersBiochemical pathwaysMolecular mechanismsMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSynaptic connectionsNerve cellsNeuronsSensory cellsSynaptic junctionsMolecular factorsSingle neuronsFirst courseCellsGenomeBiologyVaried patternsNeurotransmittersHormoneSecretionActivityPreface
B.Levitan I, Kaczmarek L. Preface. 2001, vii-viii. DOI: 10.1093/oso/9780195145236.002.0003.Peer-Reviewed Original ResearchElectrical activityBiochemical pathwaysMolecular mechanismsAppropriate synaptic connectionsMolecular biologyUndifferentiated cellsAction of neurotransmittersIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayActivityMechanismVaried patternsAccount of mechanismsPreface to the Second Edition
B.Levitan I, Kaczmarek L. Preface to the Second Edition. 2001, ix-x. DOI: 10.1093/oso/9780195145236.002.0004.Peer-Reviewed Original ResearchElectrical activityAppropriate synaptic connectionsBiochemical pathwaysAction of neurotransmittersMolecular mechanismsMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayVaried patternsActivityMechanismNeurotransmittersPreface to the First Edition
B.Levitan I, Kaczmarek L. Preface to the First Edition. 2001, xi-xii. DOI: 10.1093/oso/9780195145236.002.0005.Peer-Reviewed Original ResearchElectrical activityBiochemical pathwaysMolecular mechanismsAppropriate synaptic connectionsAction of neurotransmittersMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayActivityMechanismVaried patternsNeurotransmittersMembrane Ion Channels and Ion Currents
B.Levitan I, Kaczmarek L. Membrane Ion Channels and Ion Currents. 2001, 67-88. DOI: 10.1093/oso/9780195145236.003.0004.Peer-Reviewed Original ResearchPlasma membraneTransmembrane ion flowIon flowMembrane ion channelsMovement of chargeExcellent electrical insulatorTransmembrane ionIon currentIon channelsLipid bilayersMembrane potentialHydrophobic interiorEndogenous electrical activityIonsElectrical insulatorSmall inorganic ionsMembraneTemporal patternsBilayersCellsExternal stimuliInsulatorNerve cellsSpeciesEnergyNeurotransmitters and Neurohormones
B.Levitan I, Kaczmarek L. Neurotransmitters and Neurohormones. 2001, 223-252. DOI: 10.1093/oso/9780195145236.003.0010.Peer-Reviewed Original ResearchReceptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels
B.Levitan I, Kaczmarek L. Receptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels. 2001, 253-284. DOI: 10.1093/oso/9780195145236.003.0011.Peer-Reviewed Original ResearchTarget neuronsIon channelsParticular neurotransmitterNeuroactive substancesTransmitter releaseNervous systemNeurotransmitter receptorsNerve cellsHormone receptorsNeuronsTarget cellsReceptorsBiological responsesNeurotransmittersIntercellular communicationCell typesExtracellular signalsChemical signalsTransduction mechanismsResponseCellsNeurohormonesNeuromodulation: Mechanisms of Induced Changes in the Electrical Behavior of Nerve Cells
B.Levitan I, Kaczmarek L. Neuromodulation: Mechanisms of Induced Changes in the Electrical Behavior of Nerve Cells. 2001, 315-340. DOI: 10.1093/oso/9780195145236.003.0013.Peer-Reviewed Original ResearchNervous systemNerve cellsElectrical activityAction potential firingNeuronal electrical propertiesEndogenous electrical activityA11 neuronsSynaptic stimulationAction potentialsHormonal stimulationDifferent patternsNeuronsIon channelsStimulationSuch modulationTransduction mechanismsCellsNeuromodulationActivityThe Birth and Death of a Neuron
B.Levitan I, Kaczmarek L. The Birth and Death of a Neuron. 2001, 375-394. DOI: 10.1093/oso/9780195145236.003.0015.Peer-Reviewed Original ResearchNervous systemNeuronal developmentProfound plastic changesAdult nerve cellsGrowth of axonsConnections of neuronsImmature neuronsSynaptic contactsNew neuronsNeuronal plasticityDendritic processesNeuronal formPlastic changesSynaptic connectionsNerve cellsNeuronal structuresNeuronsAdult animalsSelect groupDeathAdultsNormal courseCellsEarly stepsAxons
2000
GLUT-3 expression in human skeletal muscle
Stuart C, Wen G, Peng B, Popov V, Hudnall S, Campbell G. GLUT-3 expression in human skeletal muscle. AJP Endocrinology And Metabolism 2000, 279: e855-e861. PMID: 11001768, DOI: 10.1152/ajpendo.2000.279.4.e855.Peer-Reviewed Original ResearchMeSH KeywordsAdultFluorescent Antibody TechniqueGlucose Transporter Type 3HumansImmunohistochemistryIn Situ HybridizationMonosaccharide Transport ProteinsMuscle Fibers, Fast-TwitchMuscle Fibers, Slow-TwitchMuscle, SkeletalNADH Tetrazolium ReductaseNerve Tissue ProteinsPeripheral NervesRNA, MessengerSarcoplasmic ReticulumSpinal NervesConceptsSlow-twitch muscle fibersHuman skeletal muscleGLUT-3Peripheral nervesSchwann cellsMuscle fibersAffinity-purified primary antibodiesSkeletal muscleHuman peripheral nervesGLUT-3 mRNANADH-tetrazolium reductase stainingGLUT-3 expressionGLUT-3 proteinNormal human skeletal muscleElectron microscopic evaluationFast-twitch fibersFluorescent-tagged antibodiesBiopsy homogenatesGLUT-1 proteinNerve cellsNerveMicroscopic evaluationAffinity-purified antibodiesAntibodiesMuscle sections
1999
Illusive transience of parvalbumin expression duringembryonic development of the primate spinal cord
Knyihár‐csillik E, Rakic P, Csillik B. Illusive transience of parvalbumin expression duringembryonic development of the primate spinal cord. International Journal Of Developmental Neuroscience 1999, 17: 79-97. PMID: 10221668, DOI: 10.1016/s0736-5748(98)00090-2.Peer-Reviewed Original ResearchConceptsNerve cellsSpinal cordLarge dorsal root ganglion cellsDorsal root ganglion cellsYoung adult macaque monkeysPrimate spinal cordUpper dorsal hornDorsal root axonsPrimary sensory neuronsSpinal reflex pathwaysElectron microscopic immunohistochemical techniquesAdult macaque monkeysParvalbumin-positive terminalsLong axonal processesDorsal hornMonkey fetusesDorsal columnsReflex pathwaysGanglion cellsClarke's nucleusAxon terminalsIntercellular networkMotoneuron poolSensory neuronsSynaptic terminalsChapter sixteen Imaging Membrane Potential Changes in Individual Neurons
Antić S, Zečević D. Chapter sixteen Imaging Membrane Potential Changes in Individual Neurons. 1999, 238-248. DOI: 10.1016/b978-012447836-7/50018-x.Peer-Reviewed Original ResearchVoltage-sensitive dyeIndividual neuronsSingle neuronsVoltage-sensitive dye recordingSpatial resolutionIndirect optical measurementsDirect electrical recordingOptical signalGood spatial resolutionOptical measurementsIndividual nerve cellsPresent sensitivityFunctional neuronal networksNeuronal dendritic treeOptical recordingDendritic treeNerve cellsDye injectionNeuronsIntracellular applicationMembrane potential changesNeuronal networksMultisite recordingsElectrical recordingsLocal modulation
1998
Peptidergic innervation and the nicotinic acetylcholine receptor in the primate basal nucleus
Csillik B, Rakic P, Knyihár‐Csillik E. Peptidergic innervation and the nicotinic acetylcholine receptor in the primate basal nucleus. European Journal Of Neuroscience 1998, 10: 573-585. PMID: 9749720, DOI: 10.1046/j.1460-9568.1998.00066.x.Peer-Reviewed Original ResearchConceptsCalcitonin gene-related peptidePrincipal nerve cellsNeuropeptide YNicotinic acetylcholine receptorsSubstance PBasal nucleusAcetylcholine receptorsPeptidergic innervationBasal forebrainPrincipal cellsElectron microscopic pre-embedding immunocytochemistryAlpha-BTXNerve cellsNeuronal nicotinic acetylcholine receptorsMeynert's basal nucleusCholine acetyltransferase immunoreactivityGene-related peptideImmunohistochemical double stainingPre-embedding immunocytochemistryImmunopositive axonsPresynaptic nAChRsCGRP immunoreactivityAcetylcholine releaseNeuronal nAChRsGlomerular arrangement
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply