2019
Cardiomyocyte-Specific STIM1 (Stromal Interaction Molecule 1) Depletion in the Adult Heart Promotes the Development of Arrhythmogenic Discordant Alternans
Cacheux M, Strauss B, Raad N, Ilkan Z, Hu J, Benard L, Feske S, Hulot JS, Akar FG. Cardiomyocyte-Specific STIM1 (Stromal Interaction Molecule 1) Depletion in the Adult Heart Promotes the Development of Arrhythmogenic Discordant Alternans. Circulation Arrhythmia And Electrophysiology 2019, 12: e007382-e007382. PMID: 31726860, PMCID: PMC6867678, DOI: 10.1161/circep.119.007382.Peer-Reviewed Original ResearchConceptsVT/VFAPD alternansStore-operated CaVentricular tachycardia/ventricular fibrillationOptical action potential mappingAdult heartVT/Adult murine modelDiscordant alternansConduction velocity slowingSarcoplasmic reticulum CaArrhythmogenic discordant alternansInitial beatsEarly mortalityFlox/Poor survivalVentricular fibrillationDiscordant APD alternansMurine modelCardiac hypertrophyConduction velocityLittermate controlsAdult miceRapid pacingElectrophysiological substrate
2018
Optical Action Potential Mapping in Acute Models of Ischemia–Reperfusion Injury: Probing the Arrhythmogenic Role of the Mitochondrial Translocator Protein
Ilkan Z, Strauss B, Campana C, Akar FG. Optical Action Potential Mapping in Acute Models of Ischemia–Reperfusion Injury: Probing the Arrhythmogenic Role of the Mitochondrial Translocator Protein. Methods In Molecular Biology 2018, 1816: 133-143. PMID: 29987816, DOI: 10.1007/978-1-4939-8597-5_10.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArrhythmias, CardiacEquipment DesignGene SilencingMaleMitochondrial Membrane Transport ProteinsMyocardial Reperfusion InjuryPerfusionRatsRats, Inbred SHRVoltage-Sensitive Dye ImagingConceptsOptical action potential mappingIschemia-reperfusion injuryTranslocator proteinPost-ischemic arrhythmiasIonotropic propertiesPostischemic arrhythmiasR injuryHypertensive ratsAcute modelArrhythmogenic roleElectrophysiological substrateElectrophysiological propertiesArrhythmia mechanismsPharmacological inhibitionIntact heartInjuryTSPO ligandsMitochondrial translocator proteinArrhythmiasTSPO geneHeartPatientsRatsQuantitative assessmentIncidence
2015
Electrical behaviour of dendritic spines as revealed by voltage imaging
Popovic MA, Carnevale N, Rozsa B, Zecevic D. Electrical behaviour of dendritic spines as revealed by voltage imaging. Nature Communications 2015, 6: 8436. PMID: 26436431, PMCID: PMC4594633, DOI: 10.1038/ncomms9436.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsComputer SimulationDendritic SpinesMembrane PotentialsMiceNeuronsOptical ImagingPatch-Clamp TechniquesSomatosensory CortexVoltage-Sensitive Dye ImagingImaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines
Popovic M, Vogt K, Holthoff K, Konnerth A, Salzberg BM, Grinvald A, Antic SD, Canepari M, Zecevic D. Imaging Submillisecond Membrane Potential Changes from Individual Regions of Single Axons, Dendrites and Spines. Advances In Experimental Medicine And Biology 2015, 859: 57-101. PMID: 26238049, PMCID: PMC5671121, DOI: 10.1007/978-3-319-17641-3_3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBivalviaDendritic SpinesFluorescent DyesLasersLightMembrane PotentialsMiceNerve NetSingle-Cell AnalysisSynapsesTime FactorsVoltage-Sensitive Dye ImagingConceptsIndividual neuronsMembrane potential changesVoltage-sensitive dye recordingAction potential initiationIndividual dendritic spinesSite of originAxon collateralsIndividual nerve cellsMembrane potential transientsVoltage-sensitive dyeDendritic spinesRegional electrical propertiesDendritic treeNerve cellsNeuronal processesSingle axonsPotential initiationComplex operational unitsBehavioral modificationNeuronal network analysisNeuronsInput-output functionMultisite recordingsCombining Membrane Potential Imaging with Other Optical Techniques
Jaafari N, Vogt KE, Saggau P, Leslie LM, Zecevic D, Canepari M. Combining Membrane Potential Imaging with Other Optical Techniques. Advances In Experimental Medicine And Biology 2015, 859: 103-125. PMID: 26238050, PMCID: PMC5675139, DOI: 10.1007/978-3-319-17641-3_4.Peer-Reviewed Original ResearchConceptsMembrane potential imagingOptical techniquesPotential imagingUncaging techniquesChannelrhodopsin stimulationVoltage-sensitive dyeVariety of applicationsSpatial mappingElectrical signalsImportant applicationsVoltageFluorescence intensityImagingParticular moleculeSignalsMembrane potential changesGateNovel investigationOptogeneticsMeasurementsIntensityTechniqueCurrent
2012
Cortical Dendritic Spine Heads Are Not Electrically Isolated by the Spine Neck from Membrane Potential Signals in Parent Dendrites
Popovic MA, Gao X, Carnevale NT, Zecevic D. Cortical Dendritic Spine Heads Are Not Electrically Isolated by the Spine Neck from Membrane Potential Signals in Parent Dendrites. Cerebral Cortex 2012, 24: 385-395. PMID: 23054810, PMCID: PMC3888368, DOI: 10.1093/cercor/bhs320.Peer-Reviewed Original Research
2011
Active Action Potential Propagation But Not Initiation in Thalamic Interneuron Dendrites
Casale A, McCormick D. Active Action Potential Propagation But Not Initiation in Thalamic Interneuron Dendrites. Journal Of Neuroscience 2011, 31: 18289-18302. PMID: 22171033, PMCID: PMC3269759, DOI: 10.1523/jneurosci.4417-11.2011.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAxonsCalcium ChannelsDendritesInterneuronsMiceNeural ConductionPotassium ChannelsSodium ChannelsSynapsesSynaptic TransmissionThalamusVoltage-Sensitive Dye ImagingConceptsDorsal lateral geniculate nucleusLateral geniculate nucleusSomatic current injectionAction potentialsDendritic arborsGeniculate nucleusSynaptic stimulationThalamic interneuronsMouse dorsal lateral geniculate nucleusDendritic neurotransmitter releaseEntire dendritic arborSingle action potentialAxon initial segmentVoltage-gated sodiumProximal dendritesDendritic appendagesInhibitory neurotransmitterExcitatory inputsInhibitory interneuronsVoltage-sensitive dyeSynaptic inputsThalamocortical cellsCalcium transientsCalcium imagingNeurotransmitter release
2010
Action Potentials Initiate in the Axon Initial Segment and Propagate through Axon Collaterals Reliably in Cerebellar Purkinje Neurons
Foust A, Popovic M, Zecevic D, McCormick DA. Action Potentials Initiate in the Axon Initial Segment and Propagate through Axon Collaterals Reliably in Cerebellar Purkinje Neurons. Journal Of Neuroscience 2010, 30: 6891-6902. PMID: 20484631, PMCID: PMC2990270, DOI: 10.1523/jneurosci.0552-10.2010.Peer-Reviewed Original ResearchConceptsAxon initial segmentAxon collateralsAction potentialsPurkinje neuronsComplex spikesLocal axon collateralsCerebellar Purkinje neuronsInitial segmentFast action potentialsAxon branch pointsSynaptic inputsVoltage-sensitive dyeCerebellar cortexNeuronal processingSpike initiationDischarge frequencySingle trialCollateralsOutput cellsNeuronsRapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons
Holthoff K, Zecevic D, Konnerth A. Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons. The Journal Of Physiology 2010, 588: 1085-1096. PMID: 20156851, PMCID: PMC2852997, DOI: 10.1113/jphysiol.2009.184960.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsDendritic SpinesExcitatory Postsynaptic PotentialsMiceMice, Inbred BALB CSynapsesVisual CortexVoltage-Sensitive Dye ImagingConceptsRapid time courseAction potentialsDendritic spinesIndividual dendritic spinesLayer 5 pyramidal neuronsTime courseTiming-dependent synaptic plasticityDendritic branchesCentral mammalian neuronsTerminal dendritic branchesVisual cortex neuronsTerminal branchesSomatic action potentialsIndividual spinesRemote dendritesPyramidal neuronsApical dendritesCortex neuronsExcitatory synapsesSupralinear integrationSynaptic inputsVoltage-sensitive dyeJuvenile miceSynaptic plasticityVisual cortex
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply