2023
Sensory Systems in the Peripheral and Central Nervous Systems Shape Host Response During Infections
Wyart C, Jim K, Prendergast A. Sensory Systems in the Peripheral and Central Nervous Systems Shape Host Response During Infections. Neuroscience 2023, 525: 47-50. PMID: 37419406, DOI: 10.1016/j.neuroscience.2023.07.008.Peer-Reviewed Original ResearchConceptsSensory cellsNervous systemInternal physiologyPresence of pathogensExternal cuesRelease of compoundsPathogenic bacteriaCentral nervous systemHomeostatic regulationInternal cuesHost defenseNeuronal activationCellsClassical functionsHost responseReceptor propertiesSensory systemsCuesInfectionBacteriaRegulationPhysiologyField of neurosciencePathogensInvasion
2019
Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons
Desban L, Prendergast A, Roussel J, Rosello M, Geny D, Wyart C, Bardet PL. Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons. PLOS Biology 2019, 17: e3000235. PMID: 31002663, PMCID: PMC6493769, DOI: 10.1371/journal.pbio.3000235.Peer-Reviewed Original ResearchConceptsRing of actinApical junctional complexApical extensionSensory cellsApical actin ringSensory cell typesInner ear sensory cellsTime-lapse imagingVivo time-lapse imagingZebrafish embryosMorphogenesisActin ringsCell typesHair bundlesMechanosensory responsesProtrusion elongationJunctional complexesActinTail bendingMolecular factorsCerebrospinal fluid-contacting neuronsApical attachmentCritical roleOsmolarity changesApical processes
2017
Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses
Michalski N, Goutman JD, Auclair SM, de Monvel J, Tertrais M, Emptoz A, Parrin A, Nouaille S, Guillon M, Sachse M, Ciric D, Bahloul A, Hardelin JP, Sutton RB, Avan P, Krishnakumar SS, Rothman JE, Dulon D, Safieddine S, Petit C. Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. ELife 2017, 6: e31013. PMID: 29111973, PMCID: PMC5700815, DOI: 10.7554/elife.31013.Peer-Reviewed Original ResearchConceptsVesicle fusionVesicle pool replenishmentIHC active zonesInner hair cellsPresynaptic plasma membraneSynaptic vesicle cycleMembrane capacitance measurementsRole of otoferlinAuditory brainstem response wavesTransmembrane proteinVesicle cycleSynaptic exocytosisPlasma membraneVoltage-gated CaHair cell ribbonC-domainSynaptic vesiclesOtoferlinSynaptic CaSensory cellsSynapse structureIntracellular CaNeurotransmitter releaseMutant miceRibbon synapses
2016
Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells
Suli A, Pujol R, Cunningham DE, Hailey DW, Prendergast A, Rubel EW, Raible DW. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. Journal Of Cell Science 2016, 129: 2250-2260. PMID: 27103160, PMCID: PMC4920245, DOI: 10.1242/jcs.182592.Peer-Reviewed Original ResearchConceptsMechanosensory hair cellsHair cellsWild-type larvaeZebrafish lateral line systemElectron-dense structuresRibbon formationProper synapsisLateral line systemMature synapseSynaptic vesiclesHair cell innervationPost-synaptic elementsSensory cellsBasolateral membranePresynaptic zoneAfferent fibersSynaptic ribbonsFunctional synapsesBalance disordersCellsInnervationMutantsSynapsesLarvaeCytoplasm
2015
Sensory Receptors
Levitan I, Kaczmarek L. Sensory Receptors. 2015, 295-326. DOI: 10.1093/med/9780199773893.003.0013.Chapters
2011
Chapter 3 Analysis of Cilia Structure and Function in Zebrafish
Malicki J, Avanesov A, Li J, Yuan S, Sun Z. Chapter 3 Analysis of Cilia Structure and Function in Zebrafish. Methods In Cell Biology 2011, 101: 39-74. PMID: 21550439, DOI: 10.1016/b978-0-12-387036-0.00003-7.Peer-Reviewed Original ResearchConceptsExcellent vertebrate model systemVertebrate model systemNormal embryonic developmentCell surface protrusionsCilia biologyGenetic accessibilityVertebrate cellsLimb morphogenesisCilia formationImportant organellesEmbryonic developmentLarval organsLeft-right asymmetryCilia structureDistribution of ciliaNephric ductZebrafishCiliary malfunctionVariety of processesPhotoreceptor cellsSensory cellsKidney cystsCiliaModel systemChapter 3 Analysis
2006
The chemical senses
Gottfried J, Small D, Zald D. The chemical senses. 2006, 125-172. DOI: 10.1093/acprof:oso/9780198565741.003.0006.Peer-Reviewed Original ResearchGap Junctions and Cochlear Homeostasis
Zhao H, Kikuchi T, Ngezahayo A, White T. Gap Junctions and Cochlear Homeostasis. The Journal Of Membrane Biology 2006, 209: 177. PMID: 16773501, PMCID: PMC1609193, DOI: 10.1007/s00232-005-0832-x.Peer-Reviewed Original ResearchConceptsGap junction systemConnexin mutationsHuman deafnessConnective tissue cell gap junction systemEpithelial cell gap junction systemGap junctionsMammalian inner earNon-sensory cellsGap junction networkGap junction functionConnexin genesTransduction processesDifferent connexinsFunctional studiesMutant channelsHereditary deafnessJunction functionSensory cellsCochlear homeostasisMutationsRecycling mechanismCritical roleConnexinsHigh incidenceAnimal models
2005
Intraflagellar Transport Is Required for the Vectorial Movement of TRPV Channels in the Ciliary Membrane
Qin H, Burnette DT, Bae YK, Forscher P, Barr MM, Rosenbaum JL. Intraflagellar Transport Is Required for the Vectorial Movement of TRPV Channels in the Ciliary Membrane. Current Biology 2005, 15: 1695-1699. PMID: 16169494, DOI: 10.1016/j.cub.2005.08.047.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiological TransportCaenorhabditis elegansCaenorhabditis elegans ProteinsCell MembraneCiliaGreen Fluorescent ProteinsIon ChannelsMembrane ProteinsMicroscopy, FluorescenceNerve Tissue ProteinsNeurons, AfferentTransient Receptor Potential ChannelsTRPP Cation ChannelsTRPV Cation ChannelsConceptsCiliary membraneCaenorhabditis elegans sensory neuronsTime-lapse fluorescence microscopyIntraflagellar transport (IFT) machineryCiliary basal bodiesTransient receptor potential vanilloidMutant backgroundPKD-2Transport machineryIntraflagellar transportOSM-9Membrane proteinsProtein movementVectorial movementAxonemal componentsTRPV channelsBasal bodiesAxonemal microtubulesVectorial transportSensory transductionFluorescence microscopySensory cellsMembraneMotilityCilia
2001
Title Pages
B.Levitan I, Kaczmarek L. Title Pages. 2001, i-iv. DOI: 10.1093/oso/9780195145236.002.0001.Peer-Reviewed Original ResearchElectrical activityAppropriate synaptic connectionsAction of neurotransmittersBiochemical pathwaysMolecular mechanismsMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSynaptic connectionsNerve cellsNeuronsSensory cellsSynaptic junctionsMolecular factorsSingle neuronsFirst courseCellsGenomeBiologyVaried patternsNeurotransmittersHormoneSecretionActivityPreface
B.Levitan I, Kaczmarek L. Preface. 2001, vii-viii. DOI: 10.1093/oso/9780195145236.002.0003.Peer-Reviewed Original ResearchElectrical activityBiochemical pathwaysMolecular mechanismsAppropriate synaptic connectionsMolecular biologyUndifferentiated cellsAction of neurotransmittersIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayActivityMechanismVaried patternsAccount of mechanismsPreface to the Second Edition
B.Levitan I, Kaczmarek L. Preface to the Second Edition. 2001, ix-x. DOI: 10.1093/oso/9780195145236.002.0004.Peer-Reviewed Original ResearchElectrical activityAppropriate synaptic connectionsBiochemical pathwaysAction of neurotransmittersMolecular mechanismsMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayVaried patternsActivityMechanismNeurotransmittersPreface to the First Edition
B.Levitan I, Kaczmarek L. Preface to the First Edition. 2001, xi-xii. DOI: 10.1093/oso/9780195145236.002.0005.Peer-Reviewed Original ResearchElectrical activityBiochemical pathwaysMolecular mechanismsAppropriate synaptic connectionsAction of neurotransmittersMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayActivityMechanismVaried patternsNeurotransmittersSensory Receptors
B.Levitan I, Kaczmarek L. Sensory Receptors. 2001, 341-372. DOI: 10.1093/oso/9780195145236.003.0014.Peer-Reviewed Original ResearchNeuronal Growth and Trophic Factors
B.Levitan I, Kaczmarek L. Neuronal Growth and Trophic Factors. 2001, 395-434. DOI: 10.1093/oso/9780195145236.003.0016.Peer-Reviewed Original Research
1997
The growing family of myosin motors and their role in neurons and sensory cells
Hasson T, Mooseker M. The growing family of myosin motors and their role in neurons and sensory cells. Current Opinion In Neurobiology 1997, 7: 615-623. PMID: 9384540, DOI: 10.1016/s0959-4388(97)80080-3.Peer-Reviewed Original Research
1968
Histochemical localization of acetylcholinesterase activity in a planarian
Lentz T. Histochemical localization of acetylcholinesterase activity in a planarian. Comparative Biochemistry And Physiology 1968, 27: 715-718. PMID: 5710280, DOI: 10.1016/0010-406x(68)90612-9.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply