2021
Erythroid enucleation: a gateway into a “bloody” world
Menon V, Ghaffari S. Erythroid enucleation: a gateway into a “bloody” world. Experimental Hematology 2021, 95: 13-22. PMID: 33440185, PMCID: PMC8147720, DOI: 10.1016/j.exphem.2021.01.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBirdsCalciumCell NucleusChromatinColony-Forming Units AssayComputational BiologyCytokinesCytoskeletal ProteinsDNA-Binding ProteinsErythroblastsErythrocytesErythropoiesisIntercellular Signaling Peptides and ProteinsMammalsMiceMicroRNAsProto-Oncogene ProteinsReceptors, Thyroid HormoneRepressor ProteinsReticulocytesrho GTP-Binding ProteinsTranscription FactorsTransport VesiclesYolk SacConceptsTerminal erythroid maturationFormation of reticulocytesEnucleation processHematopoietic stem cellsTranscription factorsCytoskeletal proteinsErythroid maturationFascinating processOrthochromatic erythroblastsTerminal maturationRate-limiting stepStem cellsIntricate processMaturationRed blood cellsCellsRBC productionMicroRNAsProteinProduction ex vivoErythroblastsEx vivoMechanismDaily productionProductionMRTFA: A critical protein in normal and malignant hematopoiesis and beyond
Reed F, Larsuel ST, Mayday MY, Scanlon V, Krause DS. MRTFA: A critical protein in normal and malignant hematopoiesis and beyond. Journal Of Biological Chemistry 2021, 296: 100543. PMID: 33722605, PMCID: PMC8079280, DOI: 10.1016/j.jbc.2021.100543.Peer-Reviewed Original ResearchConceptsMalignant hematopoiesisActin cytoskeleton dynamicsCritical cellular functionsResponse factorSerum response factorTranscription factor ACellular rolesImmediate early genesProtein partnersTranscriptional regulationCytoskeleton dynamicsCellular functionsTranscriptional targetsTranscription factorsCytoskeletal proteinsCritical proteinsMRTFAEarly genesCell typesChromosomal translocationsHematopoietic cellsCell growthFactor AHematopoiesisMuscle cells
2018
Rudhira/BCAS3 is essential for mouse development and cardiovascular patterning
Shetty R, Joshi D, Jain M, Vasudevan M, Paul J, Bhat G, Banerjee P, Abe T, Kiyonari H, VijayRaghavan K, Inamdar M. Rudhira/BCAS3 is essential for mouse development and cardiovascular patterning. Scientific Reports 2018, 8: 5632. PMID: 29618843, PMCID: PMC5884795, DOI: 10.1038/s41598-018-24014-w.Peer-Reviewed Original ResearchConceptsMouse developmentGenome-wide transcriptome analysisFirst knockout mouseDirectional cell migrationExtracellular matrix organizationExtra-embryonic tissuesSpheroid sprouting assaysEmbryonic day 9.5Endothelial cellsCKO embryosCardiovascular patterningNull embryosTranscriptome analysisRudhiraVascular patterningCardiovascular developmentCytoskeletal proteinsMolecular processesMatrix organizationCell adhesionCell migrationDay 9.5Peptidase activityYolk sacEssential role
2017
Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms
Bellini C, Bersi MR, Caulk AW, Ferruzzi J, Milewicz DM, Ramirez F, Rifkin DB, Tellides G, Yanagisawa H, Humphrey JD. Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms. Journal Of The Royal Society Interface 2017, 14: 20161036. PMID: 28490606, PMCID: PMC5454287, DOI: 10.1098/rsif.2016.1036.Peer-Reviewed Original ResearchConceptsGenetic mutationsExtracellular matrix proteinsTransmembrane receptorsCytoskeletal proteinsMatrix proteinsWild-type controlsBiomechanical phenotypeDysfunctional mechanosensingExtracellular matrixDiverse mouse modelsSmooth muscle cellsMutationsMuscle cellsProteinAorta of miceMurine modelCellsMechanosensingElastic fiber integrityMouse modelMechanoregulationStructural integrityPhenotypeIntracellularIntegrityCellular levels of Grb2 and cytoskeleton stability are correlated in a neurodegenerative scenario
Majumder P, Roy K, Singh BK, Jana NR, Mukhopadhyay D. Cellular levels of Grb2 and cytoskeleton stability are correlated in a neurodegenerative scenario. Disease Models & Mechanisms 2017, 10: 655-669. PMID: 28360125, PMCID: PMC5451165, DOI: 10.1242/dmm.027748.Peer-Reviewed Original ResearchConceptsAD-like conditionsDisease manifestCytoskeletal architecturePak1 proteinCytoskeleton stabilityAD mouse brainCytoskeletal proteinsGrb2 overexpressionGrb2Β-amyloid oligomersPotential new strategyCellular levelNeuronal lossAD patientsPreventive roleCytoskeletonProteinMouse brainBrain tissueExtracellular accumulationPotent inducerMolecular featuresUnique roleDomain levelCytoskeletal
2015
DARPP-32 interaction with adducin may mediate rapid environmental effects on striatal neurons
Engmann O, Giralt A, Gervasi N, Marion-Poll L, Gasmi L, Filhol O, Picciotto MR, Gilligan D, Greengard P, Nairn AC, Hervé D, Girault JA. DARPP-32 interaction with adducin may mediate rapid environmental effects on striatal neurons. Nature Communications 2015, 6: 10099. PMID: 26639316, PMCID: PMC4675091, DOI: 10.1038/ncomms10099.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalBrainCaffeineCalmodulin-Binding ProteinsCentral Nervous System StimulantsChlorocebus aethiopsCocaineCOS CellsDendritic SpinesDopamine and cAMP-Regulated Phosphoprotein 32EnvironmentFluorescence Recovery After PhotobleachingImmunoblottingImmunohistochemistryIn Vitro TechniquesMass SpectrometryMiceMice, Inbred C57BLMutationNeostriatumNeuronsNucleus AccumbensPhosphorylationRatsRats, Sprague-DawleyRewardConceptsAdducin phosphorylationCytoskeletal proteinsActin filamentsMolecular pathwaysCellular mechanismsEnvironmental changesPhosphorylationDARPP-32Striatal neuronsAdducinMutant miceSynaptic stabilityProteinCascadeMultiple effectsEnvironmental effectsBindsDendritic spinesNeuronsModification of responsesBrief exposurePathwayInteractionFilamentsEnrichment
2014
Exome sequencing and genome-wide copy number variant mapping reveal novel associations with sensorineural hereditary hearing loss
Haraksingh RR, Jahanbani F, Rodriguez-Paris J, Gelernter J, Nadeau KC, Oghalai JS, Schrijver I, Snyder MP. Exome sequencing and genome-wide copy number variant mapping reveal novel associations with sensorineural hereditary hearing loss. BMC Genomics 2014, 15: 1155. PMID: 25528277, PMCID: PMC4367882, DOI: 10.1186/1471-2164-15-1155.Peer-Reviewed Original ResearchConceptsHearing lossHereditary hearing lossExome sequencingSensorineural hearing lossType II myosinGenome-wide CNV analysisCase-control cohortNon-syndromic sensorineural hearing lossStrong candidate geneLoss patientsDirect clinical applicationGenetic diversityNovel lociClinical settingCytoskeletal proteinsCandidate genesCandidate lociVariants mappingDistinct familiesChromosome 16Loss phenotypeClinical applicationNovel regionLociCNV analysisReversible Modulation of Myofibroblast Differentiation in Adipose-Derived Mesenchymal Stem Cells
Desai VD, Hsia HC, Schwarzbauer JE. Reversible Modulation of Myofibroblast Differentiation in Adipose-Derived Mesenchymal Stem Cells. PLOS ONE 2014, 9: e86865. PMID: 24466271, PMCID: PMC3900664, DOI: 10.1371/journal.pone.0086865.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueBlotting, WesternCell DifferentiationCell MovementCells, CulturedExtracellular Matrix ProteinsFibroblast Growth Factor 2HumansMesenchymal Stem CellsMyofibroblastsReal-Time Polymerase Chain ReactionReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSignal TransductionConceptsAdipose-derived mesenchymal stem cellsMesenchymal stem cellsExtracellular matrixERK/MAP kinaseMyofibroblastic phenotypeStem cellsRegulation of tenascinProtein type IActivation of Smad2Abundant extracellular matrixFocal adhesionsGrowth factorKinase downstreamHuman adipose-derived mesenchymal stem cellsCytoskeletal proteinsMAP kinaseStress fibersECM proteinsCell differentiationADSC differentiationDifferentiation processFibroblast-like cellsMyofibroblast differentiationNovel therapeutic strategiesRegenerative medicine
2013
Cell Shape Can Mediate the Spatial Organization of the Bacterial Cytoskeleton
Wang S, Wingreen NS. Cell Shape Can Mediate the Spatial Organization of the Bacterial Cytoskeleton. Biophysical Journal 2013, 104: 541-552. PMID: 23442905, PMCID: PMC3566457, DOI: 10.1016/j.bpj.2012.12.027.Peer-Reviewed Original ResearchConceptsBacterial cytoskeletonCell shapeCytoskeletal filamentsBacterial cytoskeletal proteinsRod-shaped cellsCytoskeletal proteinsCell wallCytoskeletal polymerizationCytoskeletonSpatial patterningMreBConformational transitionSpatial organizationFilament lengthSame membraneFilamentsMembraneFtsZSpatial patternsChemical energyFilament bendingProteinPatterningProper controlMicrofluidic approach
2012
Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system
Shields SD, Ahn H, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, DibHajj S. Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 2012, 153: 2017-2030. PMID: 22703890, DOI: 10.1016/j.pain.2012.04.022.Peer-Reviewed Original ResearchConceptsPeripheral nervous systemSensory neuronsKnockout mouse phenotypesNervous systemDorsal root ganglion neuronsUnmyelinated sensory afferentsPrimary sensory neuronsLow-threshold mechanoreceptorsMouse peripheral nervous systemGene functionVoltage-gated sodium channelsConditional knockout miceCytoskeletal proteinsIdentity of neuronsNav1.8 expressionMolecular markersDRG neuronsVast diversitySensory afferentsCre miceGanglion neuronsMouse phenotypeNoxious stimuliAβ fibersKnockout mice
2011
The bacterial actin MreB rotates, and rotation depends on cell-wall assembly
van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 15822-15827. PMID: 21903929, PMCID: PMC3179079, DOI: 10.1073/pnas.1108999108.Peer-Reviewed Original ResearchConceptsCytoskeletal proteinsRod-like cell shapeCell wall synthesis machineryActin homolog MreBPeptidoglycan cell wallCell wall assemblyMultiple cytoskeletal proteinsMreB dynamicsBacterial morphogenesisCytoskeletal dynamicsSynthesis machineryCellular functionsCellular processesMotor proteinsCell shapeCell wallCytoskeletal motorsBacterial cellsMreBPersistent mannerProteinInsertion siteBiophysical simulationsBacteriaRod shapeSchwann cell spectrins modulate peripheral nerve myelination
Susuki K, Raphael AR, Ogawa Y, Stankewich MC, Peles E, Talbot WS, Rasband MN. Schwann cell spectrins modulate peripheral nerve myelination. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 8009-8014. PMID: 21518878, PMCID: PMC3093478, DOI: 10.1073/pnas.1019600108.Peer-Reviewed Original ResearchConceptsSchwann cell cytoskeletonCell cytoskeletonΒII spectrinSubmembranous cytoskeletal proteinsNeuron-glia interactionsEfficient action potential propagationSchwann cellsMembrane proteinsCytoskeletal rearrangementsLoss of spectrinCytoskeletal proteinsNectin-like proteinsCell shapeContact sitesF-actinPeripheral nerve myelinationSpectrinPeripheral nerve developmentΑII-spectrinCytoskeletonProteinNerve myelinationNerve developmentMotor nervesCellsSuper-Resolution Microscopy: A New Dimension in Focal Adhesions
Schwartz MA. Super-Resolution Microscopy: A New Dimension in Focal Adhesions. Current Biology 2011, 21: r115-r116. PMID: 21300274, DOI: 10.1016/j.cub.2010.12.025.Peer-Reviewed Original Research
2009
The membrane cytoskeletal protein adducin is phosphorylated by protein kinase C in D1 neurons of the nucleus accumbens and dorsal striatum following cocaine administration
Lavaur J, Mineur YS, Picciotto MR. The membrane cytoskeletal protein adducin is phosphorylated by protein kinase C in D1 neurons of the nucleus accumbens and dorsal striatum following cocaine administration. Journal Of Neurochemistry 2009, 111: 1129-1137. PMID: 19780900, PMCID: PMC2810345, DOI: 10.1111/j.1471-4159.2009.06405.x.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsBenzazepinesBenzophenanthridinesCalmodulin-Binding ProteinsCocaineCorpus StriatumDopamine AntagonistsDopamine Uptake InhibitorsDose-Response Relationship, DrugEnzyme InhibitorsGene Expression RegulationGreen Fluorescent ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutNeuronsNucleus AccumbensPhosphorylationProtein Kinase CRacloprideReceptors, Dopamine D1Time FactorsConceptsProtein kinase CAdducin phosphorylationKinase CActin-binding proteinsFamily of proteinsPhosphorylation of adducinCytoskeletal protein adducinActin dynamicsCytoskeletal rearrangementsPhosphorylation stateCytoskeletal proteinsAdducinF-actinPhosphorylationNeuronal cytoskeletonCellular architectureProteinSynaptic functionMorphological changesCytoskeletonMedium spiny neuronsSpectrinRegimen of cocaineActinRegulation
2007
Integrin Cytoskeletal Interactions
Lad Y, Harburger DS, Calderwood DA. Integrin Cytoskeletal Interactions. Methods In Enzymology 2007, 426: 69-84. PMID: 17697880, DOI: 10.1016/s0076-6879(07)26004-5.Peer-Reviewed Original ResearchConceptsIntegrin cytoplasmic tailsCytoplasmic tailProtein-protein interaction studiesIntegrin-binding proteinsIntegrin adhesion receptorsCell-substratum adhesionCytoskeletal interactionsPlasma membraneCytoskeletal proteinsBiochemical signalsAdhesion receptorsIntracellular ligandsTail interactionsCellular activitiesIntegrin-cytoskeletal interactionsMechanical forcesRecombinant modelProteinInteraction studiesTailAdhesionInteractionRegulationDynamic interactionMembrane
2006
Reconstructing and Deconstructing Agonist-Induced Activation of Integrin αIIbβ3
Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ, Ginsberg MH. Reconstructing and Deconstructing Agonist-Induced Activation of Integrin αIIbβ3. Current Biology 2006, 16: 1796-1806. PMID: 16979556, DOI: 10.1016/j.cub.2006.08.035.Peer-Reviewed Original ResearchConceptsIntegrin activationIntegrin affinityIntegrin beta cytoplasmic domainsIntegrin-associated complexesAgonist stimulationBeta cytoplasmic domainsIntegrin activation pathwaysProtein kinase CalphaExtracellular matrix assemblyBinding of talinSiRNA-mediated knockdownTumor cell metastasisRap effectorMulticellular animalsPhorbol myristate acetateSynthetic geneticsCytoplasmic domainRap1 GTPaseTransmembrane alphaActivation complexCytoskeletal proteinsTalinBeta subunitIntegrin αIIbβ3Cell adhesionStimulation of Gαq-coupled M1 muscarinic receptor causes reversible spectrin redistribution mediated by PLC, PKC and ROCK
Street M, Marsh SJ, Stabach PR, Morrow JS, Brown DA, Buckley NJ. Stimulation of Gαq-coupled M1 muscarinic receptor causes reversible spectrin redistribution mediated by PLC, PKC and ROCK. Journal Of Cell Science 2006, 119: 1528-1536. PMID: 16551696, DOI: 10.1242/jcs.02872.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Combined Chemotherapy ProtocolsCalciumCalcium-Calmodulin-Dependent Protein Kinase Type 2Calcium-Calmodulin-Dependent Protein KinasesCricetinaeCyclophosphamideDoxorubicinGTP-Binding Protein alpha Subunits, Gq-G11Intracellular Signaling Peptides and ProteinsProtein Kinase CProtein Serine-Threonine KinasesReceptor, Muscarinic M1Receptors, Muscarinicrho-Associated KinasesSignal TransductionSpectrinType C PhospholipasesVincristineConceptsG protein-coupled receptorsAlphaII-spectrinSpecialized plasma membrane domainsPlasma membrane domainsIntact actin cytoskeletonStimulation of GPCRsProtein kinase CExtracellular stimuliActin cytoskeletonProtein complexesM1 muscarinic receptorsMembrane domainsMembrane blebbingPlasma membraneCytoskeletal proteinsKinase ROCKMolecular mechanismsConstitutive activationKinase CCellular localizationGlobal rearrangementsPhospholipase CSpectrinCHO cellsReversible redistribution
2004
Vpx proteins of SIVmac239 and HIV-2ROD interact with the cytoskeletal protein α-actinin 1
Mueller S, Jung R, Weiler S, Lang S. Vpx proteins of SIVmac239 and HIV-2ROD interact with the cytoskeletal protein α-actinin 1. Journal Of General Virology 2004, 85: 3291-3303. PMID: 15483243, DOI: 10.1099/vir.0.80198-0.Peer-Reviewed Original ResearchMeSH KeywordsActininAmino Acid SequenceAnimalsBiological TransportChlorocebus aethiopsCOS CellsCytoplasmHIV-2Molecular Sequence DataProlineProtein Structure, TertiaryRetroviridae ProteinsSequence AlignmentSimian immunodeficiency virusTransfectionTwo-Hybrid System TechniquesViral Regulatory and Accessory ProteinsConceptsPre-integration complexNuclear localization signalNuclear importProline-rich C-terminal domainClassical import pathwayEfficient nuclear importTwo-hybrid screenAlpha-actinin 1Α-actinin 1C-terminal domainLoss of interactionImport pathwayLocalization signalCellular proteinsNuclear localizationSequence elementsCytoskeletal proteinsVpx geneVpx proteinsQuiescent cellsAA proteinViral proteinsProteinVirion particlesRed-capped mangabeys
2003
Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling
Calderwood DA, Fujioka Y, de Pereda JM, García-Alvarez B, Nakamoto T, Margolis B, McGlade CJ, Liddington RC, Ginsberg MH. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 2272-2277. PMID: 12606711, PMCID: PMC151330, DOI: 10.1073/pnas.262791999.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAmino Acid SequenceAnimalsCHO CellsCricetinaeCytoplasmDatabases as TopicDNADose-Response Relationship, DrugElectrophoresis, Polyacrylamide GelGlutathione TransferaseHumansIntegrin beta ChainsIntegrinsMiceModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedMutationPhosphorylationPhosphotyrosinePrecipitin TestsProtein BindingProtein ConformationProtein Structure, TertiaryRecombinant Fusion ProteinsRecombinant ProteinsSequence Homology, Amino AcidSignal TransductionTransfectionTyrosineConceptsIntegrin beta tailsBeta tailsPTB domainIntegrin tailsDok-1Heterodimeric integrin adhesion receptorsBiological functionsDomain interactionsPTB domain-containing proteinsDomain-containing proteinsDomain-ligand interactionsPhosphotyrosine-binding (PTB) domainPhosphotyrosine-binding domainCytoplasmic domain interactionsIntegrin-binding proteinsIntegrin adhesion receptorsIntegrin alpha IIbNPXY motifProtein modulesCytoplasmic domainCytoplasmic proteinsAlpha IIbCytoskeletal proteinsCanonical recognition sequenceInteracting residues
2002
SM22β encodes a lineage-restricted cytoskeletal protein with a unique developmentally regulated pattern of expression
Zhang JC, Helmke BP, Shum A, Du K, Yu WW, Lu MM, Davies PF, Parmacek MS. SM22β encodes a lineage-restricted cytoskeletal protein with a unique developmentally regulated pattern of expression. Cells And Development 2002, 115: 161-166. PMID: 12049783, DOI: 10.1016/s0925-4773(02)00088-6.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAmino Acid SequenceAnimalsBase SequenceCell LineageCells, CulturedCytoskeletal ProteinsDNA, ComplementaryGene Expression ProfilingGene Expression Regulation, DevelopmentalHumansMiceMolecular Sequence DataMuscle ProteinsMuscle, Smooth, VascularRatsSubcellular FractionsTissue DistributionConceptsCytoskeletal proteinsRegulated patternLineage-restricted patternsMouse embryonic developmentMuscle-specific proteinsCytoskeletal actin filamentsRegulated genesNovel actinNeuron-specific proteinRepeat domainEmbryonic developmentAcid polypeptideSequence identitySpecific proteinsActin filamentsIntracellular signalingLung mesenchymeGastrointestinal epithelial cellsSM22alphaCartilaginous primordiaProteinCellular morphologySmooth muscle cellsEpithelial cellsMuscle cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply