2025
TANGO2 is an acyl-CoA binding protein
Lujan A, Foresti O, Wojnacki J, Bigliani G, Brouwers N, Pena M, Androulaki S, Hashidate-Yoshida T, Kalyukina M, Novoselov S, Shindou H, Malhotra V. TANGO2 is an acyl-CoA binding protein. Journal Of Cell Biology 2025, 224: e202410001. PMID: 40015245, PMCID: PMC11867700, DOI: 10.1083/jcb.202410001.Peer-Reviewed Original ResearchConceptsAcyl-CoA binding proteinPeriphery of lipid dropletsAcyl-coenzyme A binding proteinA-binding proteinsAcyl-coenzyme AMitochondrial lumenHeme transportBinding proteinTANGO2Cellular localizationLipid dropletsStructural regionsLipid metabolismHeightened energy demandsMutationsProteinResiduesNrdEMetabolic crisisBindingMetabolismHemeSevere cardiomyopathyLipid
2022
IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses
Clement M, Forbester J, Marsden M, Sabberwal P, Sommerville M, Wellington D, Dimonte S, Clare S, Harcourt K, Yin Z, Nobre L, Antrobus R, Jin B, Chen M, Makvandi-Nejad S, Lindborg J, Strittmatter S, Weekes M, Stanton R, Dong T, Humphreys I. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses. Nature Communications 2022, 13: 5294. PMID: 36075894, PMCID: PMC9454482, DOI: 10.1038/s41467-022-32587-4.Peer-Reviewed Original ResearchConceptsInterferon-induced transmembrane protein 3IL-6 productionViral pathogenesisCytokine productionPro-inflammatory cytokine productionInflammatory cytokine productionInflammatory cytokine responseSARS-CoV-2Transmembrane protein 3Dendritic cellsCytokine responsesImmunoregulatory pathwaysImmunoregulatory functionsTLR2 responsesTLR responsesMouse modelMyeloid cellsViral stimulationProtein 3PathogenesisRestriction factorsNogoCellular localizationResponseCellsProteomic characterization of post-mortem human brain tissue following ultracentrifugation-based subcellular fractionation
Kandigian SE, Ethier EC, Kitchen RR, Lam TT, Arnold SE, Carlyle BC. Proteomic characterization of post-mortem human brain tissue following ultracentrifugation-based subcellular fractionation. Brain Communications 2022, 4: fcac103. PMID: 35611312, PMCID: PMC9123841, DOI: 10.1093/braincomms/fcac103.Peer-Reviewed Original ResearchProteomic characterizationSubcellular fractionationTissue cell type compositionMultiple cellular organellesPost-mortem human brain tissueMajority of proteinsThousands of proteinsCell type compositionHuman brain tissueSame biological sampleSpatial proteomicsProtein functionProtein localizationOrganellar markersCellular organellesCellular localizationDrug targetsSubcellular levelOrganellesAbundant organellesCentrifugation fractionsProteinCell linesDisease mechanismsMembrane breakdown
2020
Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis
Zhang X, Ramírez CM, Aryal B, Madrigal-Matute J, Liu X, Diaz A, Torrecilla-Parra M, Suárez Y, Cuervo AM, Sessa WC, Fernández-Hernando C. Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis. Arteriosclerosis Thrombosis And Vascular Biology 2020, 40: 1510-1522. PMID: 32349535, PMCID: PMC7253189, DOI: 10.1161/atvbaha.120.314291.Peer-Reviewed Original ResearchConceptsCav-1 deficiencyCav-1-deficient miceCav-1Autophagic fluxCholesterol-rich membrane domainsCav-1 interactsATG5-ATG12 complexEndothelial Cav-1 expressionRegulation of autophagyNovel molecular mechanismExtracellular matrix remodelingAutophagosome componentsMembrane domainsLipid raftsAutophagosome formationPlasma membraneCav-1 expressionMolecular mechanismsLDL transcytosisCellular localizationImportant regulatorAutophagyAutophagy contributesRelevant regulatorMatrix remodeling
2018
Cellular localization of PD-L1 expression in mismatch-repair-deficient and proficient colorectal carcinomas
Liu S, Gӧnen M, Stadler Z, Weiser M, Hechtman J, Vakiani E, Wang T, Vyas M, Joneja U, Al-Bayati M, Segal N, Smith J, King S, Guercio S, Ntiamoah P, Markowitz A, Zhang L, Cercek A, Garcia-Aguilar J, Saltz L, Diaz L, Klimstra D, Shia J. Cellular localization of PD-L1 expression in mismatch-repair-deficient and proficient colorectal carcinomas. Modern Pathology 2018, 32: 110-121. PMID: 30166615, PMCID: PMC6309293, DOI: 10.1038/s41379-018-0114-7.Peer-Reviewed Original ResearchConceptsPD-L1 expressionMismatch repair-proficient tumorsImmune cell stainingMismatch repair-deficient tumorsPD-L1Tumor-infiltrating-lymphocytesColorectal carcinomaTumor cellsImmune cell PD-L1 expressionMismatch repair-deficient colorectal carcinomasTreatment of colorectal carcinomaMolecular sub-classificationLigand PD-L1Mismatch repair-deficient colorectal cancerHigher lymphocyte countMismatch repair-proficientCell stainingCellular localizationPD-1Mismatch repair deficiencyPredictive biomarkersLymphocyte countMolecular subtypesClinical efficacyTumor typesP‑Bodies: Composition, Properties, and Functions
Luo Y, Na Z, Slavoff SA. P‑Bodies: Composition, Properties, and Functions. Biochemistry 2018, 57: 2424-2431. PMID: 29381060, PMCID: PMC6296482, DOI: 10.1021/acs.biochem.7b01162.Peer-Reviewed Original ResearchConceptsP-bodiesMRNA decayMRNA decay machineryLiquid-liquid phase separationP-body functionPost-transcriptional regulationDecay machineryProcessing bodiesTranslational repressionEukaryotic cellsCytoplasmic ribonucleoproteinCellular localizationRibonucleoproteinMolecular compositionRecent advancesRepressionMachineryProteinMRNARegulationFunctionCellsLocalizationDiscoveryComposition
2017
Multifunctional molecule ERp57: From cancer to neurodegenerative diseases
Hettinghouse A, Liu R, Liu C. Multifunctional molecule ERp57: From cancer to neurodegenerative diseases. Pharmacology & Therapeutics 2017, 181: 34-48. PMID: 28723413, PMCID: PMC5743601, DOI: 10.1016/j.pharmthera.2017.07.011.Peer-Reviewed Original ResearchConceptsProtein disulfide isomerase gene familyMultiple cellular localizationsEndoplasmic reticulum localizationDiverse pathological statesGene familyERp57 functionsProtein familyPDI familySubcellular compartmentsPhysiological processesCellular localizationMultifunctional memberERp57Aberrant functionalityNeurodegenerative diseasesTherapeutic developmentPathological statesFamilyLocalizationIsomeraseRedox activityAvailable knowledgeNumerous studiesHostExpression
2013
Oxidative Stress in Mammalian Cells Impinges on the Cysteines Redox State of Human XRCC3 Protein and on Its Cellular Localization
Girard P, Graindorge D, Smirnova V, Rigolet P, Francesconi S, Scanlon S, Sage E. Oxidative Stress in Mammalian Cells Impinges on the Cysteines Redox State of Human XRCC3 Protein and on Its Cellular Localization. PLOS ONE 2013, 8: e75751. PMID: 24116071, PMCID: PMC3793007, DOI: 10.1371/journal.pone.0075751.Peer-Reviewed Original ResearchConceptsHomologous recombinationSensitivity to camptothecinCysteine to serineInhibition of DNA replicationCysteine redox stateExposure to camptothecinCellular reducing systemsTargets of ROSIn silico predictionMutant proteinsRAD51 paralogsGenome stabilitySubcellular localizationNon-reducing SDS-PAGEDNA replicationIncreased electrophoretic mobilityMutated proteinChromatin fractionHR pathwayCamptothecin treatmentCysteine residuesInduce DNA damageHuman cellsCellular localizationCHO cellsDevelopment of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells
Bindra RS, Goglia AG, Jasin M, Powell SN. Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells. Nucleic Acids Research 2013, 41: e115-e115. PMID: 23585275, PMCID: PMC3675474, DOI: 10.1093/nar/gkt255.Peer-Reviewed Original ResearchConceptsMammalian cellsHomologous recombinationDouble-strand break repair pathwayNon-homologous end-joining repairSite-specific DSBsEnd-joining activityBreak repair pathwayEnd-joining repairPrevention of tumorigenesisSerum-deprived cellsGenomic integrityIntrachromosomal locusI-SceIHR repairProtein stabilityCanonical NHEJRepair pathwaysRepair assaysNHEJ repairMutagenic NHEJCellular localizationDSB inductionLiving cellsNHEJRepair activity
2012
Nuclear localization of Klotho in brain: an anti-aging protein
German D, Khobahy I, Pastor J, Kuro-o M, Liu X. Nuclear localization of Klotho in brain: an anti-aging protein. Neurobiology Of Aging 2012, 33: 1483.e25-1483.e30. PMID: 22245317, PMCID: PMC3328593, DOI: 10.1016/j.neurobiolaging.2011.12.018.Peer-Reviewed Original ResearchConceptsExtracellular domainNuclear membraneSingle-pass transmembrane proteinMultiple fibroblast growth factor receptorsFibroblast growth factor receptorNuclear functionsPrecise cellular localizationTransmembrane proteinGrowth factor receptorNuclear localizationPlasma membraneTransmembrane formCellular localizationCell typesCultured cellsAnti-aging proteinCell membraneImmunoelectron microscopyLigand affinityWhole animalFactor receptorAntioxidant enzymesProteinKlotho proteinGenes
2011
A bright approach to the immunoproteasome: Development of LMP2/β1i-specific imaging probes
Carmony K, Lee D, Wu Y, Lee N, Wehenkel M, Lee J, Lei B, Zhan C, Kim K. A bright approach to the immunoproteasome: Development of LMP2/β1i-specific imaging probes. Bioorganic & Medicinal Chemistry 2011, 20: 607-613. PMID: 21741845, PMCID: PMC3193892, DOI: 10.1016/j.bmc.2011.06.039.Peer-Reviewed Original Research
2008
Alpha and Gamma Isoforms of the Type I Phosphatidylinositol 4‐phosphate 5‐kinase Regulate Distinct Stages of the Ca2+ Response in Mast Cells
Vasudevan L, Jeromin A, Volpicelli‐Daley L, De Camilli P, Baird B, Holowka D. Alpha and Gamma Isoforms of the Type I Phosphatidylinositol 4‐phosphate 5‐kinase Regulate Distinct Stages of the Ca2+ Response in Mast Cells. The FASEB Journal 2008, 22: 804.1-804.1. DOI: 10.1096/fasebj.22.1_supplement.804.1.Peer-Reviewed Original ResearchMast cellsER storesMast cell responsesRBL-2H3 mast cellsType IInflammatory mediatorsKO miceBone marrowStore-operated Ca 2IgE receptorCell responsesAntigen crosslinkingExocytotic releaseIP 3 receptorsCa 2Hydrolysis of phosphatidylinositolAntigenReceptorsEndoplasmic reticulumCellular localizationGamma isoformsInfluxCells
2006
Stimulation of Gαq-coupled M1 muscarinic receptor causes reversible spectrin redistribution mediated by PLC, PKC and ROCK
Street M, Marsh SJ, Stabach PR, Morrow JS, Brown DA, Buckley NJ. Stimulation of Gαq-coupled M1 muscarinic receptor causes reversible spectrin redistribution mediated by PLC, PKC and ROCK. Journal Of Cell Science 2006, 119: 1528-1536. PMID: 16551696, DOI: 10.1242/jcs.02872.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Combined Chemotherapy ProtocolsCalciumCalcium-Calmodulin-Dependent Protein Kinase Type 2Calcium-Calmodulin-Dependent Protein KinasesCricetinaeCyclophosphamideDoxorubicinGTP-Binding Protein alpha Subunits, Gq-G11Intracellular Signaling Peptides and ProteinsProtein Kinase CProtein Serine-Threonine KinasesReceptor, Muscarinic M1Receptors, Muscarinicrho-Associated KinasesSignal TransductionSpectrinType C PhospholipasesVincristineConceptsG protein-coupled receptorsAlphaII-spectrinSpecialized plasma membrane domainsPlasma membrane domainsIntact actin cytoskeletonStimulation of GPCRsProtein kinase CExtracellular stimuliActin cytoskeletonProtein complexesM1 muscarinic receptorsMembrane domainsMembrane blebbingPlasma membraneCytoskeletal proteinsKinase ROCKMolecular mechanismsConstitutive activationKinase CCellular localizationGlobal rearrangementsPhospholipase CSpectrinCHO cellsReversible redistribution
2003
Receptor and nonreceptor protein tyrosine phosphatases in the nervous system
Paul S, Lombroso P. Receptor and nonreceptor protein tyrosine phosphatases in the nervous system. Cellular And Molecular Life Sciences 2003, 60: 2465-2482. PMID: 14625689, PMCID: PMC11138652, DOI: 10.1007/s00018-003-3123-7.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainHumansIntracellular Signaling Peptides and ProteinsMitogen-Activated Protein KinasesNerve Tissue ProteinsProtein Tyrosine Phosphatase, Non-Receptor Type 11Protein Tyrosine Phosphatase, Non-Receptor Type 6Protein Tyrosine PhosphatasesProtein Tyrosine Phosphatases, Non-ReceptorReceptor-Like Protein Tyrosine Phosphatases, Class 2Receptor-Like Protein Tyrosine Phosphatases, Class 5Receptors, Cell SurfaceSignal TransductionConceptsProtein tyrosineNonreceptor protein tyrosineDual-specific phosphataseCellular signaling pathwaysNervous systemSignaling pathwaysCellular localizationPhysiological functionsFunctional rolePTPCentral nervous systemIntracellular mechanismsTyrosineImportant rolePhosphatasePathwayRoleLocalizationFunctionReceptors
2002
Rapid vascular cell responses to estrogen and membrane receptors
Haynes MP, Li L, Russell KS, Bender JR. Rapid vascular cell responses to estrogen and membrane receptors. Vascular Pharmacology 2002, 38: 99-108. PMID: 12379956, DOI: 10.1016/s0306-3623(02)00133-7.Peer-Reviewed Original ResearchConceptsSignal transduction cascadeTransduction cascadeG protein-coupled receptorsMembrane-localized estrogen receptorsEstrogen receptorTranscription factorsMAP kinaseApparent coronary heart diseaseRapid consequencesCellular responsesCellular localizationMembrane receptorsCoronary heart diseaseAge-matched malesEffects of estrogenVascular cell responsesSmooth muscle cellsVariety of estrogenVascular cellsMuscle cellsComplex formationPremenopausal womenHeart diseaseVascular wallMarked gender differences
1999
Hepatic sequestration and modulation of the canalicular transport of the organic cation, daunorubicin, in the rat
Hayes J, Soroka C, Rios‐Velez L, Boyer J. Hepatic sequestration and modulation of the canalicular transport of the organic cation, daunorubicin, in the rat. Hepatology 1999, 29: 483-493. PMID: 9918926, DOI: 10.1002/hep.510290216.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Bacterial AgentsAntineoplastic AgentsATP Binding Cassette Transporter, Subfamily B, Member 1BileBile CanaliculiBiological TransportBucladesineCationsChloroquineDaunorubicinKineticsLiverMacrolidesMaleMitochondrial ProteinsNocodazoleRatsRats, WistarRibosomal ProteinsSaccharomyces cerevisiae ProteinsTaurocholic AcidVerapamilConceptsBiliary excretionCoadministration of verapamilInhibitors of MDR1Rat hepatocyte coupletsBiliary recoveryDose administeredHepatic sequestrationTR- mutant ratsTherapeutic agentsExcretionDaunorubicinPericanalicular regionHepatocyte coupletsCanalicular transportRat liverBafilomycin ATaurocholateRatsIPRLIntracellular acidic compartmentsCellular localizationMicrotubule destabilizerConfocal microscopyIRHCPattern of distributionEffects of hypotonic swelling on the cellular distribution and expression of pICln in human nonpigmented ciliary epithelial cells
Sánchez-Torres J, Huang W, Civan M, Coca-Prados M. Effects of hypotonic swelling on the cellular distribution and expression of pICln in human nonpigmented ciliary epithelial cells. Current Eye Research 1999, 18: 408-416. PMID: 10435827, DOI: 10.1076/ceyr.18.6.408.5266.Peer-Reviewed Original ResearchConceptsOpen reading frameCiliary epithelial cellsPlasma membraneFusion proteinWestern blot analysisEpithelial cellsCellular distributionTag fusion proteinCandidate gene productsBlot analysisHuman nonpigmented ciliary epithelial cellsTotal cell extractsHypotonic treatmentHuman ciliary epithelial cellsMammalian cellsPolyclonal antibodiesReading frameGene productsNonpigmented ciliary epithelial cellsCultured ciliary epithelial cellsPerinuclear regionCellular localizationCell extractsCultured cellsProtein
1998
Cellular Localization of Calmodulin-dependent Protein Kinases I and II to A-cells and D-cells of the Endocrine Pancreas
Matovcik L, Nairn A, Gorelick F. Cellular Localization of Calmodulin-dependent Protein Kinases I and II to A-cells and D-cells of the Endocrine Pancreas. Journal Of Histochemistry & Cytochemistry 1998, 46: 519-526. PMID: 9524198, DOI: 10.1177/002215549804600412.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalcium-Calmodulin-Dependent Protein Kinase Type 1Calcium-Calmodulin-Dependent Protein Kinase Type 2Calcium-Calmodulin-Dependent Protein KinasesCyclic AMP Response Element-Binding ProteinCystic Fibrosis Transmembrane Conductance RegulatorDigestive SystemFluorescent Antibody Technique, IndirectGlucagonImmunoblottingIslets of LangerhansMicroscopy, ConfocalPancreasRatsSomatostatinSomatostatin-Secreting CellsTissue DistributionConceptsCaM kinase IKinase IProtein kinase ICaM kinase IIGlucagon secretionKinase IICalmodulin-dependent protein kinase ISomatostatin cellsDependent protein kinase IA cellsSomatostatin-containing D-cellsD cellsDifferent cell typesRegulation of Ca2Islets of LangerhansCaM kinaseCytosolic proteinsI antibodiesSomatostatin granulesPancreatic polypeptideCellular localizationRegulatory rolePeptide antibodiesIntracellular Ca2Endocrine pancreas
1997
A switch in the cellular localization of macrophage migration inhibitory factor (MIF) in rat testis after ethane dimethane sulfonate treatment
Meinhardt A, Bacher M, McFarlane J, Mallidis C, Lehmann C, Metz C, de Kretser D, Bucala R, Hedger M. A switch in the cellular localization of macrophage migration inhibitory factor (MIF) in rat testis after ethane dimethane sulfonate treatment. Journal Of Reproductive Immunology 1997, 34: 35-36. DOI: 10.1016/s0165-0378(97)90404-6.Peer-Reviewed Original ResearchPlatelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) tyrosine phosphorylation state changes during vasculogenesis in the murine conceptus.
Pinter E, Barreuther M, Lu T, Imhof B, Madri J. Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) tyrosine phosphorylation state changes during vasculogenesis in the murine conceptus. American Journal Of Pathology 1997, 150: 1523-30. PMID: 9137078, PMCID: PMC1858227.Peer-Reviewed Original ResearchConceptsBlood islandsSrc homology 2 domain-containing proteinsDomain-containing proteinsPhosphorylation state changesPlatelet endothelial cell adhesion molecule-1PECAM-1 cytoplasmic domainMurine conceptusParticular tyrosine residueCell-extracellular matrixDifferential tyrosine phosphorylationCell-cell interactionsEndothelial cell migrationCytoplasmic domainEmbryonic angioblastsMesodermal cellsTyrosine phosphorylationTyrosine residuesCellular localizationCell migrationAngioblastsPhosphorylationGrowth factorVasculogenesisCell adhesion molecule-1Morphogens
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply