2025
A mechanically resilient soft hydrogel improves drug delivery for treating post-traumatic osteoarthritis in physically active joints
Joshi N, Yan J, Dang M, Slaughter K, Wang Y, Wu D, Ung T, Bhingaradiya N, Pandya V, Chen M, Kaur S, Bhagchandani S, Alfassam H, Joseph J, Gao J, Dewani M, Chu R, Yip R, Weldon E, Shah P, Pisal N, Shukla C, Sherman N, Luo J, Conway T, Eickhoff J, Botelho L, Alhasan A, Karp J, Ermann J. A mechanically resilient soft hydrogel improves drug delivery for treating post-traumatic osteoarthritis in physically active joints. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2409729122. PMID: 40163719, PMCID: PMC12002200, DOI: 10.1073/pnas.2409729122.Peer-Reviewed Original ResearchConceptsTreat post-traumatic osteoarthritisMechanical loadingSoft hydrogelsDrug releaseKinetics of drug releaseIntra-articular drug deliveryPost-traumatic osteoarthritisHydrogel potentialIntra-articular deliverySoft materialsHydrogelsDrug deliveryReduced cartilage degenerationSelf-HealingMouse knee jointsRelease kineticsCartilage degenerationActive jointsLoadSuperior performanceStructural integrityEncapsulated drugJointsDisease-modifying osteoarthritis drugsKnee joint
2024
Multiscale computational model of aortic remodeling following postnatal disruption of TGFβ signaling
Estrada A, Irons L, Tellides G, Humphrey J. Multiscale computational model of aortic remodeling following postnatal disruption of TGFβ signaling. Journal Of Biomechanics 2024, 169: 112152. PMID: 38763809, PMCID: PMC11141772, DOI: 10.1016/j.jbiomech.2024.112152.Peer-Reviewed Original ResearchAdult aortaTGFB signalingSmooth muscle cellsAortic remodelingCardiac-inducedMouse modelNormal mechanical loadingMuscle cellsPostnatal developmentHemodynamic loadNormal loadAortaMechanical homeostasisMechanical loadingMultiscale computational modelIncreasing loadLoadCell signalingGene productsStructural integrity
2022
Improving acetabular shell deformation testing
Beitler BG, Crich A, Tommasini SM, Wiznia DH. Improving acetabular shell deformation testing. Journal Of The Mechanical Behavior Of Biomedical Materials 2022, 130: 105203. PMID: 35381517, PMCID: PMC9246253, DOI: 10.1016/j.jmbbm.2022.105203.Peer-Reviewed Original ResearchConceptsAcetabular shell deformationISO 7206Peak loadShell deformationOptical displacement measurementsTesting deviceMaterial testing deviceDeformation testingScrew fastenersDisplacement measurementsMinimal deformationDeformationExperimental setupStructural integrityAcetabular shellLoadDevicesISO standardsShellFastenersImplant failureOptical dataShell typeInstronMeasurements
2019
Plastic Deformation and Fragmentation of Strained Actin Filaments
Schramm AC, Hocky GM, Voth GA, Martiel JL, De La Cruz EM. Plastic Deformation and Fragmentation of Strained Actin Filaments. Biophysical Journal 2019, 117: 453-463. PMID: 31301801, PMCID: PMC6697348, DOI: 10.1016/j.bpj.2019.06.018.Peer-Reviewed Original Research
2018
A Net Mold-based Method of Scaffold-free Three-Dimensional Cardiac Tissue Creation.
Bai Y, Yeung E, Lui C, Ong CS, Pitaktong I, Huang C, Inoue T, Matsushita H, Ma C, Hibino N. A Net Mold-based Method of Scaffold-free Three-Dimensional Cardiac Tissue Creation. Journal Of Visualized Experiments 2018 PMID: 30124650, PMCID: PMC6126624, DOI: 10.3791/58252.Peer-Reviewed Original Research
2017
Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms
Bellini C, Bersi MR, Caulk AW, Ferruzzi J, Milewicz DM, Ramirez F, Rifkin DB, Tellides G, Yanagisawa H, Humphrey JD. Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms. Journal Of The Royal Society Interface 2017, 14: 20161036. PMID: 28490606, PMCID: PMC5454287, DOI: 10.1098/rsif.2016.1036.Peer-Reviewed Original ResearchConceptsGenetic mutationsExtracellular matrix proteinsTransmembrane receptorsCytoskeletal proteinsMatrix proteinsWild-type controlsBiomechanical phenotypeDysfunctional mechanosensingExtracellular matrixDiverse mouse modelsSmooth muscle cellsMutationsMuscle cellsProteinAorta of miceMurine modelCellsMechanosensingElastic fiber integrityMouse modelMechanoregulationStructural integrityPhenotypeIntracellularIntegrity
2016
DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching
Powell JT, Akhuetie‐Oni B, Zhang Z, Lin C. DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching. Angewandte Chemie International Edition 2016, 55: 11412-11416. PMID: 27527591, PMCID: PMC5019031, DOI: 10.1002/anie.201604621.Peer-Reviewed Original ResearchConceptsRotaxane assemblySupramolecular assembliesAssembly routeStructure switchingStructural switchingRotaxanesFunctional nanodevicesUnique structureBuilding blocksMacrocyclesDNA hybridizationElectron microscopyFinal productMultistep assemblyAssemblySynthesisStructural integrityHereinNanodevicesTranslational motionMicroscopySecond mechanismFirst mechanismRouteElectrophoresis
2015
Chapter Twelve Cell Adhesion in Epidermal Development and Barrier Formation
Sumigray KD, Lechler T. Chapter Twelve Cell Adhesion in Epidermal Development and Barrier Formation. Current Topics In Developmental Biology 2015, 112: 383-414. PMID: 25733147, PMCID: PMC4737682, DOI: 10.1016/bs.ctdb.2014.11.027.Peer-Reviewed Original ResearchConceptsEpidermal developmentAdhesion proteinsCell-cell adhesionCell-cell junctionsCell biological studiesCell adhesion proteinsNoncanonical roleComposite proteinsAdhesive functionBarrier formationGrowth controlCell adhesionTissue physiologyProteinBiological studiesJunctional systemEpidermisTransductionAdhesionStructural integrityDifferentiationPhysiologyRoleFunctionJunction
2008
Acyl‐Carrier Protein–Phosphopantetheinyltransferase Partnerships in Fungal Fatty Acid Synthases
Crawford JM, Vagstad AL, Ehrlich KC, Udwary DW, Townsend CA. Acyl‐Carrier Protein–Phosphopantetheinyltransferase Partnerships in Fungal Fatty Acid Synthases. ChemBioChem 2008, 9: 1559-1563. PMID: 18551496, PMCID: PMC3189688, DOI: 10.1002/cbic.200700659.Peer-Reviewed Original Research
1995
The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells
Avraham K, Hasson T, Steel K, Kingsley D, Russell L, Mooseker M, Copeland N, Jenkins N. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nature Genetics 1995, 11: 369-375. PMID: 7493015, DOI: 10.1038/ng1295-369.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceChromosome InversionCloning, MolecularDeafnessDNA Mutational AnalysisGenes, RecessiveHair Cells, Auditory, InnerHumansMiceMice, Inbred C57BLMice, Mutant StrainsMolecular Sequence DataMyosin Heavy ChainsOrgan of CortiRestriction MappingRNA, MessengerSequence DeletionConceptsMyosin VIUnconventional myosin heavy chainPositional cloning approachInner ear hair cellsHuman deafness disordersExcellent model systemEar hair cellsSensory hair cellsHair cellsDeafness disordersCloning approachUnconventional myosinDeafness mutationsDeafness mutantsDeafness genesMyosin heavy chainGenesGenetic deafnessModel systemHeavy chainStructural integrityWaltzerInner earCellsMutants
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply