2025
Genetic variants linked to neurodevelopmental disorders within the β3-β4 loop of the TRIO PH2 domain release autoinhibition of GEF2 activity
Carrizales M, Boulton A, Koleske A. Genetic variants linked to neurodevelopmental disorders within the β3-β4 loop of the TRIO PH2 domain release autoinhibition of GEF2 activity. Journal Of Biological Chemistry 2025, 301: 110429. PMID: 40581118, PMCID: PMC12309612, DOI: 10.1016/j.jbc.2025.110429.Peer-Reviewed Original ResearchConceptsGuanine exchange factorRho family GTPasesIn vitro fluorescence-based assayActivation of RhoAActivation of RhoA.Neurite outgrowthFluorescence-based assayTrio proteinsSingle-point variantsFamily GTPasesExchange factorPH domainGTP exchangeNeurodevelopmental disordersCytoskeletal rearrangementsReleasing autoinhibitionGef1Genetic variantsAssociated with autism spectrum disorderN2a cellsRare variantsAutoinhibitionB3-B4Neuro-2aTriosLats1/2 Are Essential for Developmental Vascular Remodeling and Biomechanical Adaptation to Shear Stress
Cowdin M, Pramanik T, Mohr-Allen S, Fu Y, Mills A, Spurgin S, Varner V, Davis G, Cleaver O. Lats1/2 Are Essential for Developmental Vascular Remodeling and Biomechanical Adaptation to Shear Stress. Arteriosclerosis Thrombosis And Vascular Biology 2025, 45: 1521-1542. PMID: 40501385, DOI: 10.1161/atvbaha.124.322258.Peer-Reviewed Original ResearchShear stressLaminar shear stressCultured endothelial cellsEndothelial cellsResponse to shear stressCell shapeBlood flowShearHemodynamic forcesHippo pathway kinasesHuman pulmonary artery endothelial cellsPrimary human pulmonary artery endothelial cellsPulmonary artery endothelial cellsResponse to blood flowBiomechanical cuesMechanical cuesIn vitroArtery endothelial cellsCytoskeletal rearrangementsPhenotype in vivoMurine endothelial cellsFlowEmbryonic lethalityMRNA expression analysisPathway kinases
2016
Diaphanous regulates SCAR complex localization during Drosophila myoblast fusion
Deng S, Bothe I, Baylies M. Diaphanous regulates SCAR complex localization during Drosophila myoblast fusion. Fly 2016, 10: 178-186. PMID: 27314572, PMCID: PMC5036928, DOI: 10.1080/19336934.2016.1195938.Peer-Reviewed Original ResearchConceptsArp2/3 activationMyoblast fusionFusion siteSCAR activityDrosophila myoblast fusionBranched actin networksRegulate actin dynamicsActin cytoskeletal rearrangementDrosophila to manExtra View articleLoss of SCARCell-cell fusionOrganizing actinActin dynamicsActin rearrangementActin networkCytoskeletal rearrangementsSite of fusionMultinucleated muscle cellsActinComplex localizationDrosophilaWaspsView articleModel system
2013
Exploring the Nicotinic Acetylcholine Receptor-Associated Proteome with iTRAQ and Transgenic Mice
McClure-Begley TD, Stone KL, Marks MJ, Grady SR, Colangelo CM, Lindstrom JM, Picciotto MR. Exploring the Nicotinic Acetylcholine Receptor-Associated Proteome with iTRAQ and Transgenic Mice. Genomics Proteomics & Bioinformatics 2013, 11: 207-218. PMID: 23891776, PMCID: PMC3806329, DOI: 10.1016/j.gpb.2013.05.005.Peer-Reviewed Original ResearchConceptsNicotinic acetylcholine receptorsPutative interacting proteinsΒ2 subunitMammalian central nervous systemAcetylcholine receptorsInteracting proteinProteomic analysisQuantitative proteomicsCytoskeletal rearrangementsIsobaric tagsNeuronal nicotinic acetylcholine receptorsCalcium signalingAbsolute quantitationΑ4β2 nAChRsProteinReduced expressionΒ2 subunit expressionPotential targetCentral nervous systemSubunitsExpressionPrincipal receptorTransgenic miceSubunit expressionΑ4WAVE2 Regulates Epithelial Morphology and Cadherin Isoform Switching through Regulation of Twist and Abl
Bryce NS, Reynolds AB, Koleske AJ, Weaver AM. WAVE2 Regulates Epithelial Morphology and Cadherin Isoform Switching through Regulation of Twist and Abl. PLOS ONE 2013, 8: e64533. PMID: 23691243, PMCID: PMC3654908, DOI: 10.1371/journal.pone.0064533.Peer-Reviewed Original ResearchConceptsEpithelial morphogenesisAbl kinaseActin cytoskeletal rearrangementCell-cell junctionsE-cadherinRegulation of TwistTotal cell lysatesAbl kinase activityEpithelial morphologyTranscription factor Twist1N-cadherin proteinTwist1 expressionWAVE2 complexABL substratesCellular signalingInhibition of AblCadherin isoformsCytoskeletal rearrangementsTyrosine phosphorylationEpithelial-mesenchymal transitionKinase activityMorphological phenotypesFilament localizationCadherin expressionWAVE2
2012
The role of hyperosmotic stress in inflammation and disease
Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. BioMolecular Concepts 2012, 3: 345-364. PMID: 22977648, PMCID: PMC3438915, DOI: 10.1515/bmc-2012-0001.Peer-Reviewed Original ResearchHyperosmotic stressNon-renal tissuesCell cycle arrestHigh extracellular osmolarityOsmolyte synthesisCytoskeletal rearrangementsRegulatory pathwaysMitochondrial depolarizationShock proteinsHyperosmotic conditionsHuman diseasesCell shrinkageDNA damageMammalian kidneyCycle arrestInner medullary regionProtein carbonylationCytoprotective mechanismsExtracellular osmolarityConcentrating mechanismAntioxidant enzymesAdaptive mechanismsPhysiological conditionsPathological consequencesOxidative stress
2011
Schwann cell spectrins modulate peripheral nerve myelination
Susuki K, Raphael AR, Ogawa Y, Stankewich MC, Peles E, Talbot WS, Rasband MN. Schwann cell spectrins modulate peripheral nerve myelination. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 8009-8014. PMID: 21518878, PMCID: PMC3093478, DOI: 10.1073/pnas.1019600108.Peer-Reviewed Original ResearchConceptsSchwann cell cytoskeletonCell cytoskeletonΒII spectrinSubmembranous cytoskeletal proteinsNeuron-glia interactionsEfficient action potential propagationSchwann cellsMembrane proteinsCytoskeletal rearrangementsLoss of spectrinCytoskeletal proteinsNectin-like proteinsCell shapeContact sitesF-actinPeripheral nerve myelinationSpectrinPeripheral nerve developmentΑII-spectrinCytoskeletonProteinNerve myelinationNerve developmentMotor nervesCells
2009
The membrane cytoskeletal protein adducin is phosphorylated by protein kinase C in D1 neurons of the nucleus accumbens and dorsal striatum following cocaine administration
Lavaur J, Mineur YS, Picciotto MR. The membrane cytoskeletal protein adducin is phosphorylated by protein kinase C in D1 neurons of the nucleus accumbens and dorsal striatum following cocaine administration. Journal Of Neurochemistry 2009, 111: 1129-1137. PMID: 19780900, PMCID: PMC2810345, DOI: 10.1111/j.1471-4159.2009.06405.x.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsBenzazepinesBenzophenanthridinesCalmodulin-Binding ProteinsCocaineCorpus StriatumDopamine AntagonistsDopamine Uptake InhibitorsDose-Response Relationship, DrugEnzyme InhibitorsGene Expression RegulationGreen Fluorescent ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutNeuronsNucleus AccumbensPhosphorylationProtein Kinase CRacloprideReceptors, Dopamine D1Time FactorsConceptsProtein kinase CAdducin phosphorylationKinase CActin-binding proteinsFamily of proteinsPhosphorylation of adducinCytoskeletal protein adducinActin dynamicsCytoskeletal rearrangementsPhosphorylation stateCytoskeletal proteinsAdducinF-actinPhosphorylationNeuronal cytoskeletonCellular architectureProteinSynaptic functionMorphological changesCytoskeletonMedium spiny neuronsSpectrinRegimen of cocaineActinRegulationRegulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts
Bradley WD, Koleske AJ. Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts. Journal Of Cell Science 2009, 122: 3441-3454. PMID: 19759284, PMCID: PMC2746129, DOI: 10.1242/jcs.039859.Peer-Reviewed Original ResearchConceptsAbl family kinasesNon-receptor tyrosine kinaseWAVE family proteinsCell-specific proteinsActivation of cortactinExtracellular cuesEpithelial morphogenesisAdhesion dynamicsCytoskeletal rearrangementsEssential regulatorPhysiological contextCell motilityActin polymerizationCytoskeletal changesPhysiological processesTyrosine kinaseGenetic studiesKinaseMorphogenesisCell contractilityCell migrationProteinComplex processImmune systemCytoskeleton
2008
Modulation of the actin cytoskeleton by Salmonella
Galan J. Modulation of the actin cytoskeleton by Salmonella. The FASEB Journal 2008, 22: 530.1-530.1. DOI: 10.1096/fasebj.22.1_supplement.530.1.Peer-Reviewed Original ResearchEffector proteinsHost cellsActin cytoskeletonBacterial proteinsCellular responsesBacterial effector proteinsProtein secretion systemSpecialized protein secretion systemActin cytoskeletal reorganizationDownstream effector proteinsSignal transduction pathwaysProtein Cdc42Exchange factorMembrane rufflingSmall GTPRho GTPasesSecretion systemCytoskeletal reorganizationTransduction pathwaysCytoskeletal rearrangementsCdc42RhoG.ProteinCytoskeletonRacProhibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence
Schleicher M, Shepherd BR, Suarez Y, Fernandez-Hernando C, Yu J, Pan Y, Acevedo LM, Shadel GS, Sessa WC. Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. Journal Of Cell Biology 2008, 180: 101-112. PMID: 18195103, PMCID: PMC2213620, DOI: 10.1083/jcb.200706072.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaCells, CulturedCellular SenescenceCytoskeletonElectron Transport Complex IEndothelial CellsEndothelium, VascularHumansMiceMice, Inbred StrainsMitochondriaMitochondrial MembranesNeovascularization, PhysiologicNeuropeptidesPhosphatidylinositol 3-KinasesProhibitinsProto-Oncogene Proteins c-aktrac GTP-Binding Proteinsrac1 GTP-Binding ProteinReactive Oxygen SpeciesRepressor ProteinsSignal TransductionConceptsProhibitin 1Mitochondrial functionKnockdown of PHB1Inner mitochondrial membraneEndothelial cell motilityEndothelial cellsCytoskeletal rearrangementsMitochondrial membraneVivo angiogenesis assaysCell motilityAngiogenic capacityCellular senescenceReactive oxygen speciesMitochondrial productionFunctional blood vesselsImportant regulatorSenescenceAngiogenesis assayTube formationOxygen speciesVascular homeostasisCellsVascular systemRac1Yeast
2007
A Critical Role for Cortactin Phosphorylation by Abl-Family Kinases in PDGF-Induced Dorsal-Wave Formation
Boyle SN, Michaud GA, Schweitzer B, Predki PF, Koleske AJ. A Critical Role for Cortactin Phosphorylation by Abl-Family Kinases in PDGF-Induced Dorsal-Wave Formation. Current Biology 2007, 17: 445-451. PMID: 17306540, DOI: 10.1016/j.cub.2007.01.057.Peer-Reviewed Original ResearchConceptsAbl family kinasesCortactin phosphorylationActin regulatory protein cortactinTyrosine kinaseAbl family tyrosine kinasesSrc family kinasesNonreceptor tyrosine kinaseHuman protein microarrayCell morphogenesisActin reorganizationCytoskeletal rearrangementsProtein cortactinGrowth factor receptorLamellipodial protrusionCytoskeletal structuresCell motilityProper regulationPDGF treatmentTyrosine residuesCortactinKinaseNovel substrateDownstream actionsPhosphorylationProtein microarrays
2006
Regulation of Cytoskeletal Dynamics and Cell Morphogenesis by Abl Family Kinases
Koleske A. Regulation of Cytoskeletal Dynamics and Cell Morphogenesis by Abl Family Kinases. Molecular Biology Intelligence Unit 2006, 48-67. DOI: 10.1007/978-0-387-68744-5_5.Peer-Reviewed Original ResearchCell morphogenesisProtrusive structuresActin rich protrusive structuresFormation of actinAbl family kinasesNonreceptor tyrosine kinaseExtended C-terminusMetazoan organismsArp2/3 complexCytoskeletal dynamicsProtein complexesRac GTPasesExhibit defectsFamily kinasesNeuronal morphogenesisAbl familyCytoskeletal rearrangementsCytoskeletal networkCytoskeletal structuresEssential regulatorMutant animalsC-terminusActin filamentsTyrosine kinaseF-actin
2004
Adhesion-Dependent Regulation of p190RhoGAP in the Developing Brain by the Abl-Related Gene Tyrosine Kinase
Hernández SE, Settleman J, Koleske AJ. Adhesion-Dependent Regulation of p190RhoGAP in the Developing Brain by the Abl-Related Gene Tyrosine Kinase. Current Biology 2004, 14: 691-696. PMID: 15084284, DOI: 10.1016/j.cub.2004.03.062.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsBrainCytoskeletonDNA-Binding ProteinsGTPase-Activating ProteinsGuanine Nucleotide Exchange FactorsImmunoblottingMiceMorphogenesisNeuritesNeuronsNuclear ProteinsPhosphorylationPlasmidsPrecipitin TestsProtein-Tyrosine KinasesRepressor ProteinsTransfectionTumor Cells, CulturedConceptsAdhesion-dependent regulationArg substrateNeuronal morphogenesisKinase activityGene Tyrosine KinaseActin-dependent processesWild-type extractsWild-type cellsArg kinase activityAbl kinase activityMembrane rufflingPostnatal mouse brainFamily kinasesCytoskeletal rearrangementsPhosphotyrosine contentFilopodial protrusionsCell motilityArg kinaseP190RhoGAPMouse brainTyrosine kinaseKinasePhosphorylationMorphogenesisPostnatal brainHow do Abl family kinases regulate cell shape and movement?
Hernández SE, Krishnaswami M, Miller AL, Koleske AJ. How do Abl family kinases regulate cell shape and movement? Trends In Cell Biology 2004, 14: 36-44. PMID: 14729179, DOI: 10.1016/j.tcb.2003.11.003.Peer-Reviewed Original ResearchConceptsAbl family kinasesFamily kinasesAdhesion receptorsC-terminal halfCytoskeletal regulatory proteinsNonreceptor tyrosine kinaseCell morphogenesisCytoskeletal dynamicsRecent biochemicalCytoskeletal rearrangementsCytoskeletal structuresCytoskeletal componentsRegulatory proteinsCell shapeGenetic analysisTyrosine kinaseKinaseCell surfaceARG proteinRelay signalsProteinLeukemia cellsDrosophilaCrystallographic analysisMorphogenesis
2003
Regulation of neuronal morphogenesis and synaptic function by Abl family kinases
Moresco E, Koleske AJ. Regulation of neuronal morphogenesis and synaptic function by Abl family kinases. Current Opinion In Neurobiology 2003, 13: 535-544. PMID: 14630215, DOI: 10.1016/j.conb.2003.08.002.Peer-Reviewed Original Research
2001
Coupling of the TCR to Integrin Activation by SLAP-130/Fyb
Peterson E, Woods M, Dmowski S, Derimanov G, Jordan M, Wu J, Myung P, Liu Q, Pribila J, Freedman B, Shimizu Y, Koretzky G. Coupling of the TCR to Integrin Activation by SLAP-130/Fyb. Science 2001, 293: 2263-2265. PMID: 11567141, DOI: 10.1126/science.1063486.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdaptor Proteins, Signal TransducingAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteCarrier ProteinsCD3 ComplexCell AdhesionCell MembraneImmunologic CappingIntercellular Adhesion Molecule-1Interleukin-2Lectins, C-TypeLymphocyte ActivationLymphocyte Function-Associated Antigen-1MicePhosphatidylinositol 3-KinasesPhosphoproteinsProtein-Tyrosine KinasesReceptors, Antigen, T-CellReceptors, Interleukin-2Signal TransductionT-Lymphocytes
2000
Signal-dependent membrane targeting by pleckstrin homology (PH) domains
LEMMON M, FERGUSON K. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochemical Journal 2000, 350: 1-18. DOI: 10.1042/bj3500001.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsPleckstrin homology domainPH domainHomology domainSignal-dependent recruitmentSmall protein modulesDifferent protein ligandsMost PH domainsGreen fluorescent proteinMembrane associationProtein modulesCellular signalingDynamin 1Cytoskeletal rearrangementsCell signalingOligomeric statePlasma membraneMembrane bindingStructural basisHost proteinsFluorescent proteinProtein ligandsPhysiological functionsPhysiological roleAmino acidsPhosphoinositide
1999
Requirement of p21-activated Kinase (PAK) for Salmonella typhimurium–induced Nuclear Responses
Chen L, Bagrodia S, Cerione R, Galán J. Requirement of p21-activated Kinase (PAK) for Salmonella typhimurium–induced Nuclear Responses. Journal Of Experimental Medicine 1999, 189: 1479-1488. PMID: 10224288, PMCID: PMC2193063, DOI: 10.1084/jem.189.9.1479.Peer-Reviewed Original ResearchConceptsP21-activated kinaseBacterial effector proteinsEffector proteinsTarget proteinsSmall molecular weight GTPasesSerine/threonine kinaseType III secretion systemCdc42 effector proteinsC-Jun NH2-terminal kinase activationCdc42/RacFunction of Cdc42PAK kinase activityDedicated type III secretion systemEffector loop mutantsActin cytoskeleton rearrangementActin cytoskeleton reorganizationHost cell cytoplasmCultured epithelial cellsNuclear responseWeight GTPasesThreonine kinaseRho familyRho GTPasesSecretion systemCytoskeletal rearrangements
1998
A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage
Hardt W, Urlaub H, Galán J. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 2574-2579. PMID: 9482928, PMCID: PMC19418, DOI: 10.1073/pnas.95.5.2574.Peer-Reviewed Original ResearchConceptsType III protein secretion systemType III secretion systemProtein secretion systemSecretion systemEffector proteinsInvasion-associated type III secretion systemCluster of genesTail fiber proteinHost cell cytoplasmSouthern hybridization analysisMobile genetic elementsCultured epithelial cellsInduction of apoptosisSopE proteinEnterica serovar TyphimuriumBacteriophage genesBacterial entryCytoskeletal rearrangementsS. enterica serovar TyphimuriumGenetic elementsPathogenicity islandFiber proteinHybridization analysisCell cytoplasmEffector molecules
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply