2025
Instant assembly of collagen for tissue engineering and bioprinting
Gong X, Wen Z, Liang Z, Xiao H, Lee S, Rossello‐Martinez A, Xing Q, Wright T, Nguyen R, Mak M. Instant assembly of collagen for tissue engineering and bioprinting. Nature Materials 2025, 1-12. PMID: 40481243, DOI: 10.1038/s41563-025-02241-7.Peer-Reviewed Original ResearchCollagen bioinkElement methodBioprinting approachScaffold materialsTissue engineeringFabrication methodGelation kineticsCollagen constructsCells self-assembledUnmodified collagenBioprintingBiofabricationArchitectural cuesAssembly of collagenLiquid-gel transitionSelf-AssemblyRegenerative medicineEngineeringPH neutralizationBioinkMacro-andRapid assemblyCollagenous elementsAssemblyKineticsMacromolecular crowding-based biofabrication utilizing unmodified extracellular matrix bioinks
Jordan S, Li X, Rossello-Martinez A, Liang Z, Gong X, Xiao H, Mak M. Macromolecular crowding-based biofabrication utilizing unmodified extracellular matrix bioinks. Acta Biomaterialia 2025, 198: 37-48. PMID: 40268621, DOI: 10.1016/j.actbio.2025.02.052.Peer-Reviewed Original ResearchConceptsDecellularized extracellular matrixExtrusion bioprintingComplex 3D structuresLayer-by-layer buildingCell scaffold materialsNatural extracellular matrixBiofabrication applicationsSolubilized extracellular matrixRobust hydrogelsLow printabilityTissue engineeringBioinkFabrication methodPromote biocompatibilityGelation timeBioactive scaffoldsPrintabilityBiofabricationNative tissueOrgan-specific extracellular matrixCrosslinkingExtracellular matrixBiocompatibilityExtrusionRegenerative medicineSalivary gland stem/progenitor cells: advancing from basic science to clinical applications
Langthasa J, Guan L, Jinagal S, Le Q. Salivary gland stem/progenitor cells: advancing from basic science to clinical applications. Cell Regeneration 2025, 14: 4. PMID: 39856475, PMCID: PMC11759724, DOI: 10.1186/s13619-025-00221-5.Peer-Reviewed Original ResearchSalivary gland stem/progenitor cellsBioengineered organ replacementTissue-based therapiesEffective clinical therapiesRadiation therapySjogren's syndromeStem/progenitor cellsClinical therapyTherapyDifferentiation pathwayClinical applicationRegenerative medicineSyndromeTissue regenerationOrgan replacementCulture techniquesSjogrenTransplantationPatientsAdvancements in techniques for human iPSC-derived cardiomyocytes maturation: mechanical and electrical stimulation approaches
Lu Y, Liu Y, Yan Y, Fooladi S, Qyang Y. Advancements in techniques for human iPSC-derived cardiomyocytes maturation: mechanical and electrical stimulation approaches. Biophysical Reviews 2025, 17: 169-183. PMID: 40060015, PMCID: PMC11885779, DOI: 10.1007/s12551-024-01267-6.Peer-Reviewed Original ResearchHuman induced pluripotent stem cell-derived cardiomyocytesMaturity of human-induced pluripotent stem cell-derived cardiomyocytesPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesIon channel expressionCell-derived cardiomyocytesChannel expressionCo-culture systemElectrophysiological propertiesAdult cardiomyocytesCardiomyocyte maturationSynchronous contractionProtein expressionGrowth factorSarcomere alignmentClinical practiceElectrical pacingElectrical stimulation techniquesMaturation protocolsCardiomyocytesCo-CultureRegenerative medicineElectrical stimulation approachesDisease modelsDrug screening
2024
CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury
Shen S, Wang P, Wu P, Huang P, Chi T, Xu W, Xi Y. CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury. Molecular Therapy 2024, 32: 3974-3989. PMID: 39245939, PMCID: PMC11573616, DOI: 10.1016/j.ymthe.2024.09.008.Peer-Reviewed Original ResearchWnt/b-catenin signalingStem cell activityLung epitheliumAlveolar regenerationPulmonary fibrosisLung fibrosisWnt signalingCell activationMouse models of lung injuryModel of lung injuryWnt activityAlveolar type II cell proliferationBleomycin-induced injuryAmeliorated pulmonary fibrosisActivation of Wnt signalingType II cell proliferationInhibit lung fibrosisRegenerative medicineAnti-fibrotic effectsTreating pulmonary fibrosisActivated Wnt signalingLung injuryMouse modelFibrosisWnt/b-cateninApplications, challenges, and prospects of induced pluripotent stem cells for vascular disease
Biswas P, Park J. Applications, challenges, and prospects of induced pluripotent stem cells for vascular disease. Molecules And Cells 2024, 47: 100077. PMID: 38825189, PMCID: PMC11260847, DOI: 10.1016/j.mocell.2024.100077.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsPluripotent stem cellsVascular diseaseStem cellsTissue-engineered blood vesselsDevelopment of human induced pluripotent stem cellsInduced pluripotent stem cellsField of regenerative medicinePeripheral arterial diseaseDisease modelsVascular organoidsArtery diseaseShear stressGlobal health issueHeart diseaseVascular cellsHuman pathophysiologyClinical applicationVascular physiologyBlood vesselsRegenerative medicineDiseaseCyclic stretchDrugOrganoids
2022
Prospect and retrospect of 3D bio-printing
Prabhakaran P, Palaniyandi T, Kanagavalli B, kumar V, Hari R, Sandhiya V, Baskar G, Rajendran B, Sivaji A. Prospect and retrospect of 3D bio-printing. Acta Histochemica 2022, 124: 151932. PMID: 36027838, DOI: 10.1016/j.acthis.2022.151932.Peer-Reviewed Original ResearchAdipocyte plasticity in tissue regeneration, repair, and disease
Horsley V. Adipocyte plasticity in tissue regeneration, repair, and disease. Current Opinion In Genetics & Development 2022, 76: 101968. PMID: 35988318, DOI: 10.1016/j.gde.2022.101968.Peer-Reviewed Original ResearchConceptsMammalian tissue repairTissue repairEssential regulatorAdipocyte plasticityFunction of adipocytesCritical regulatorLipid-filled cellsMultiple tissuesTissue functionRegenerative medicineAdipocytesSkeletal muscleBioactive productsRegulatorMammary glandTherapeutic avenuesFibrotic lesionsEndocrine functionTissue regenerationPlasticityWound healingContractile fibroblastsTissueRepairTumorigenesisPhysiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue
Shen S, Sewanan LR, Shao S, Halder SS, Stankey P, Li X, Campbell SG. Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue. Stem Cell Reports 2022, 17: 2037-2049. PMID: 35931080, PMCID: PMC9481907, DOI: 10.1016/j.stemcr.2022.07.006.Peer-Reviewed Original ResearchConceptsHuman-induced pluripotent stem cell-derived cardiomyocytesWide potential applicationsRegenerative medicineScalable platformElectrical pacingPotential applicationsForce-frequency behaviorCardiac troponin IPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesAdrenergic responseCell-derived cardiomyocytesFunctional maturationHiPSC-CM maturationTroponin IClinical researchTwitch kineticsHeart tissuePhysiological CaPacingPhysiological calciumApplicationsBasic researchRole of CaMaturationProgress in Bioengineering Strategies for Heart Regenerative Medicine
Häneke T, Sahara M. Progress in Bioengineering Strategies for Heart Regenerative Medicine. International Journal Of Molecular Sciences 2022, 23: 3482. PMID: 35408844, PMCID: PMC8998628, DOI: 10.3390/ijms23073482.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsHuman pluripotent stem cellsCardiac tissue engineering strategiesRegenerative medicineStem cell engineeringHeart regenerationNovel functional biomaterialsCardiac tissue engineeringStem cell biologyTissue engineering strategiesHeart diseasePluripotent stem cellsEngineering strategiesCell engineeringFunctional biomaterialsTissue engineeringCardiac biologyCell biologyBioengineering strategiesGreat promiseCardiomyocyte maturationDisease modelingHeart regenerative medicineInsufficient therapeutic optionsStem cellsTherapeutic applications
2021
Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine
Dash BC, Korutla L, Vallabhajosyula P, Hsia HC. Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine. Advances In Wound Care 2021, 11: 622-638. PMID: 34155919, DOI: 10.1089/wound.2021.0049.Peer-Reviewed Original ResearchConceptsInduced pluripotent stem cell (iPSC) technologyTissue-engineered skin constructsSkin constructsSkin tissue engineeringStem cell technologyPluripotent stem cell (iPSC) technologyInduced pluripotent stem cellsPluripotent stem cellsCell-based therapiesRegenerative medicineTissue engineeringCell technologyCurrent advancementsTissue regenerationDisease modelingHiPSC linesEfficient manufacturing processesIPSC linesCurrent progressFunctional cellsLarge animal studiesNext generationChapter 12 Induced pluripotent stem cells in wound healing
Gao X, Gorecka J, Cheema U, Gu Y, Wu Y, Dardik A. Chapter 12 Induced pluripotent stem cells in wound healing. 2021, 269-290. DOI: 10.1016/b978-0-12-822229-4.00003-6.ChaptersPluripotent stem cellsCell-free extracellular vesiclesIdeal delivery platformSomatic donor cellsStem cellsDestruction of embryosPluripotent stem cell populationDelivery platformDelivery scaffoldsRegenerative medicineIPSC technologyWidespread clinical adoptionTissue regenerationStem cell sourceTremendous advantagesCell sourceCell therapyPromising approachExciting new strategyIPSCsStem cell populationNew strategyExtracellular vesiclesUndifferentiated cellsTranslational potential
2020
Vascular progenitors generated from tankyrase inhibitor-regulated naïve diabetic human iPSC potentiate efficient revascularization of ischemic retina
Park TS, Zimmerlin L, Evans-Moses R, Thomas J, Huo JS, Kanherkar R, He A, Ruzgar N, Grebe R, Bhutto I, Barbato M, Koldobskiy MA, Lutty G, Zambidis ET. Vascular progenitors generated from tankyrase inhibitor-regulated naïve diabetic human iPSC potentiate efficient revascularization of ischemic retina. Nature Communications 2020, 11: 1195. PMID: 32139672, PMCID: PMC7058090, DOI: 10.1038/s41467-020-14764-5.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsBlood VesselsCell DifferentiationCell LineCell LineageCell MovementCellular SenescenceDiabetes MellitusDNA DamageEnzyme InhibitorsEpigenesis, GeneticFibroblastsHistone CodeHumansInduced Pluripotent Stem CellsIschemiaMiceOrganoidsPoly(ADP-ribose) Polymerase InhibitorsPromoter Regions, GeneticRetinaStem CellsTankyrasesTeratomaTranscription, GeneticConceptsVascular progenitorsLineage-primed gene expressionPluripotent stem cell stateGreater genomic stabilityStem cell stateStem cellsPluripotent stem cellsPatient-specific hiPSCsEpigenetic plasticityHuman stem cellsPluripotent stateGenomic stabilityCell statesGene expressionHuman iPSCProgenitorsHiPSCsRegenerative medicineEfficient revascularizationCellsConventional humanVascular functionalityIPSCsPlasticity
2019
Single-cell connectomic analysis of adult mammalian lungs
Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S, Neumark N, Leiby KL, Greaney AM, Yuan Y, Horien C, Linderman G, Engler AJ, Boffa DJ, Kluger Y, Rosas IO, Levchenko A, Kaminski N, Niklason LE. Single-cell connectomic analysis of adult mammalian lungs. Science Advances 2019, 5: eaaw3851. PMID: 31840053, PMCID: PMC6892628, DOI: 10.1126/sciadv.aaw3851.Peer-Reviewed Original ResearchConceptsTissue homeostasisMammalian lungSingle-cell RNA sequencing techniquesAdult mammalian lungRNA sequencing techniquesCell-cell interactionsSequencing techniquesKey pathwaysAlveolar type IFunctional roleCell typesCell populationsRegenerative medicineHomeostatic mechanismsHomeostasisFine architectureFunctional lung tissueIncomplete understandingMajor roleType ITissueRegulationPathwayAlveolar cell populationsDistal lungUse of Human Cells and Heart Muscle Tissue Patches as Therapeutics for Heart Diseases
Batty L, Ellis M, Anderson C, Luo J, Riaz M, Park J, Das S, Huang Y, Jacoby D, Campbell S, Qyang Y. Use of Human Cells and Heart Muscle Tissue Patches as Therapeutics for Heart Diseases. 2019 DOI: 10.1016/b978-0-12-801238-3.65542-3.ChaptersCardiac tissue engineeringThree-dimensional tissuesCardiovascular disease epidemicRegenerative medicineTissue engineeringCardiac patchesCardiovascular healthHeart diseaseInfarcted tissueClinical useHydrogel matrixStem cellsCardiomyocytesTissue patchesRecent innovationsDisease epidemicsTissueFurther researchHuman cells
2018
3D Printing Technology for Vascularization
Yeung E, Yesantharao P, Ong C, Hibino N. 3D Printing Technology for Vascularization. Biological And Medical Physics, Biomedical Engineering 2018, 121-139. DOI: 10.1007/978-3-319-99319-5_5.Peer-Reviewed Original ResearchVascular tissue engineeringTissue engineeringNative tissue functionTissue engineering methodologiesPrinting methodologyMicroscale structuresTissue constructsComplex geometriesEngineering methodologyEngineeringFabricationGreat challengeCurrent applicationsPrintingRegenerative medicineCurrent challengesRegenerative medicine techniquesLiver diseases in the dish: iPSC and organoids as a new approach to modeling liver diseases
Fiorotto R, Amenduni M, Mariotti V, Fabris L, Spirli C, Strazzabosco M. Liver diseases in the dish: iPSC and organoids as a new approach to modeling liver diseases. Biochimica Et Biophysica Acta (BBA) - Molecular Basis Of Disease 2018, 1865: 920-928. PMID: 30264693, PMCID: PMC6658095, DOI: 10.1016/j.bbadis.2018.08.038.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsLiver diseaseStem cell fieldHepatocyte-like cellsPluripotent stem cellsRegenerative medicineNext-generation toolsSurvival of patientsRecent technological advancesMononuclear blood cellsPotential applicationsGene editingQuality of lifeLiver cell typesDisease modelingCell fieldAdequate cellular modelsLiver transplantationOrgan failureLiver specimensDiseaseStem cellsBlood cellsLiver cellsDrug testingSkin fibroblasts
2017
The host response to naturally-derived extracellular matrix biomaterials
Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials. Seminars In Immunology 2017, 29: 72-91. PMID: 28274693, DOI: 10.1016/j.smim.2017.01.002.Peer-Reviewed Original Research
2016
Potential of Induced Pluripotent Stem Cells (iPSCs) for Treating Age-Related Macular Degeneration (AMD)
Fields M, Cai H, Gong J, Del Priore L. Potential of Induced Pluripotent Stem Cells (iPSCs) for Treating Age-Related Macular Degeneration (AMD). Cells 2016, 5: 44. PMID: 27941641, PMCID: PMC5187528, DOI: 10.3390/cells5040044.Peer-Reviewed Original ResearchInduced pluripotent stem cellsEmbryonic stem cellsAge-related macular degenerationPluripotent stem cellsCell replacement therapyDisease modelingIPSC disease modelingStem cellsReplacement therapyMacular degenerationRegenerative medicineRetinal pigment epithelium cellsStem cell biologyPigment epithelium cellsRetinal degenerative disordersUnlimited sourceDrug development platformClinical trialsDevelopment platformStargardt diseaseAnimal modelsRetinal degenerationAutologous sourceDegenerative disordersTherapeutic useTargeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices
Calle EA, Hill RC, Leiby KL, Le AV, Gard AL, Madri JA, Hansen KC, Niklason LE. Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices. Acta Biomaterialia 2016, 46: 91-100. PMID: 27693690, PMCID: PMC5451113, DOI: 10.1016/j.actbio.2016.09.043.Peer-Reviewed Original ResearchConceptsExtracellular matrixLung extracellular matrixMatrix proteinsECM-associated proteinsCell-matrix interactionsProtein extraction methodsWhole organ regenerationRegenerative medicineOrganotypic cell culturesQuantitative proteomicsAcellular extracellular matrixECM proteinsOrgan regenerationCell adhesionProteomicsProtein analysisQuantitative biochemical dataProteinPotent substrateXenogeneic extracellular matrixTargeted proteomicsCell nuclear antigenBiochemical dataImportant glycoproteinCell cultures
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply