2025
Hypoxia Induces Immunosuppression by Silencing STING in Cancer.
Lu Y, Yurkevicz A, Liu Y, Glazer P. Hypoxia Induces Immunosuppression by Silencing STING in Cancer. Cancer Research 2025 PMID: 40939188, DOI: 10.1158/0008-5472.can-24-2038.Peer-Reviewed Original ResearchStimulator of interferon genesHypoxia-induced downregulationStimulator of interferon genes pathwayImmune responseEfficacy of cancer therapyImmunogenic cell deathTumor immune responseMultiple cancer typesSTING agonistsTumor hypoxiaAssociated with epigenetic modificationsTumor growthTumor developmentCancer therapyTumorCancer cellsCGAS/STING pathwayCancer typesInterferon genesCancerImmune signalingHypoxiaIn vivoCell deathNucleic acid sensingHeart of the matter: Neutrophils, cancer, and cardiovascular disease
Ambreen S, McCarthy A, Hidalgo A, Adrover J. Heart of the matter: Neutrophils, cancer, and cardiovascular disease. Journal Of Experimental Medicine 2025, 222: e20242402. PMID: 40788286, DOI: 10.1084/jem.20242402.Peer-Reviewed Original ResearchConceptsCardiovascular diseaseImmune cellsBurden of cardiovascular diseaseElevated burdenVascular endothelial cellsThrombotic eventsCardiovascular complicationsHypercoagulable stateTumor growthNeutrophil subtypesCancer patientsNeutrophil numbersVascular damageCancer progressionMyocardial infarctionCancerEndothelial cellsNeutrophilsDiseaseDisease statesPathological conditionsInflammationThe source of dietary fat influences anti-tumour immunity in obese mice
Kunkemoeller B, Prendeville H, McIntyre C, Temesgen A, Loftus R, Yao C, Dyck L, Sinclair L, Rollings C, Douglas A, Pernes G, Mitchelson K, Harmon C, Raverdeau M, Ward R, Kane H, Kline J, O’Brien K, Brennan M, Smith F, Stevens B, Roche H, Lavelle E, Finlay D, Cantrell D, Chouchani E, Kaech S, Mills E, Haigis M, Lynch L. The source of dietary fat influences anti-tumour immunity in obese mice. Nature Metabolism 2025, 7: 1630-1645. PMID: 40715760, PMCID: PMC12373505, DOI: 10.1038/s42255-025-01330-w.Peer-Reviewed Original ResearchConceptsCD8 T cell infiltrationAnti-tumor immunityHigh-fat dietSyngeneic modelDietary fatTumor growthLong-chain acylcarnitine speciesAnti-tumor immune responseT cell infiltrationModel of melanomaRegulate natural killerComposition of dietary fatHealthy immune systemPlasma metabolomeNatural killerImmunosuppressive metabolitesTumor microenvironmentSource of dietary fatCell infiltrationSignificance of dietCancer outcomesImmune responseObese miceImmune systemAcylcarnitine speciesSystemic administration of an RNA binding and cell-penetrating antibody targets therapeutic RNA to multiple mouse models of cancer
Quijano E, Martinez-Saucedo D, Ianniello Z, Pinto-Medici N, Rackear M, Chen H, Lola-Pereira L, Liu Y, Hegan D, Shan X, Tseng R, Yugawa D, Chowdhury S, Khang M, Singh J, Abdullah R, Azhir P, Kashima S, Woods W, Gosstola N, Turner B, Squinto S, Ludwig D, Bindra R, Robert M, Braun D, Perez Pinera P, Saltzman W, Escobar-Hoyos L, Glazer P. Systemic administration of an RNA binding and cell-penetrating antibody targets therapeutic RNA to multiple mouse models of cancer. Science Translational Medicine 2025, 17: eadk1868. PMID: 40668891, PMCID: PMC12375925, DOI: 10.1126/scitranslmed.adk1868.Peer-Reviewed Original ResearchConceptsMouse modelAntitumor efficacyTumor cellsMouse model of pancreatic cancerActivation of cytotoxic T cellsOrthotopic pancreatic cancer modelImmune responseModel of pancreatic cancerAntitumor immune responseCytotoxic T cellsPancreatic cancer modelTreatment of patientsMultiple mouse modelsRIG-IPattern recognition receptorsInnate immune responseImmunocompetent miceTumor massT cellsMalignant cellsPancreatic cancerCancer modelsTumor targetingNonmalignant cellsTumor growthSignal Transducer Nanoparticles Enable Siglec‐10/G Blockade Immunotherapy for Breast Cancer Treatment
Meng Z, Gao X, Tang X, Fan J, Sheu W, Tu Z, Yu J, Long G, Wang L, Liu R, Zhou J. Signal Transducer Nanoparticles Enable Siglec‐10/G Blockade Immunotherapy for Breast Cancer Treatment. Advanced Materials 2025, e2502758. PMID: 40619860, DOI: 10.1002/adma.202502758.Peer-Reviewed Original ResearchImmune checkpoint blockadeBreast cancerNext generation of cancer immunotherapiesTriple-negative BCHigher recurrence rateInhibited tumor growthBreast cancer treatmentBlockade immunotherapyCheckpoint blockadeCancer immunotherapyLow side effectsCombination therapyRecurrence rateRRx-001Immune cellsTumor growthDrug resistanceSmall molecule inhibitorsCurrent treatmentImmune responseSide effectsTherapeutic effectCancer treatmentEnhanced phagocytosisBC cellsTumor infiltrating lymphocytes in breast cancer: A narrative review with focus on analytic validity, clinical validity, and clinical utility
Finkelman B, Zhang H, Hicks D, Rimm D, Turner B. Tumor infiltrating lymphocytes in breast cancer: A narrative review with focus on analytic validity, clinical validity, and clinical utility. Human Pathology 2025, 162: 105866. PMID: 40609752, DOI: 10.1016/j.humpath.2025.105866.Peer-Reviewed Original ResearchConceptsTumor-infiltrating lymphocytesBreast cancerClinical utilityTumor microenvironmentInternational Immuno-Oncology Biomarker Working GroupReports of tumor-infiltrating lymphocytesHER2+ breast cancerClinical validationBiomarker Working GroupOptimization of therapyNarrative reviewInfiltrating lymphocytesTriple-negativePredictive biomarkersTumor growthAnalytical validationClinical subtypesClinical trialsStephen PagetPathologist's assessmentTreatment selectionTumorBreastCancerBiomarkersFabrication of RIG-I-Activating Nanoparticles for Intratumoral Immunotherapy via Flash Nanoprecipitation
Stone P, Kwiatkowski A, Roth E, Fedorova O, Pyle A, Wilson J. Fabrication of RIG-I-Activating Nanoparticles for Intratumoral Immunotherapy via Flash Nanoprecipitation. Molecular Pharmaceutics 2025, 22: 4597-4611. PMID: 40590315, PMCID: PMC12338309, DOI: 10.1021/acs.molpharmaceut.5c00125.Peer-Reviewed Original ResearchConceptsIntratumoral immunotherapyIntratumoral administrationPreclinical modelsCytosolic deliveryAdaptive antitumor immune responsesFlash nanoprecipitationMC38 colon cancerSystemic antitumor immunityAntitumor immune responsePattern recognition receptor retinoic acid-inducible gene IOptimization of polymer propertiesPolymeric nanoparticlesRIG-I agonistRIG-IAntitumor immunityCancer immunotherapyPoor in vivo stabilityTumor siteTumor growthColon cancerSystemic administrationTurbulent micromixingRetinoic acid-inducible gene IImmune responseImmunotherapyMitochondrial complex IV remodeling in tumor-associated macrophages amplifies interferon signaling and promotes anti-tumor immunity
Clark M, Simeonov K, Mowel W, Michieletto M, Joannas L, Wright J, Erickson I, Johnson L, Krishnan R, de la Fuente-Núñez C, Minn A, Henao-Mejia J. Mitochondrial complex IV remodeling in tumor-associated macrophages amplifies interferon signaling and promotes anti-tumor immunity. Immunity 2025, 58: 1670-1687.e12. PMID: 40592341, PMCID: PMC12259027, DOI: 10.1016/j.immuni.2025.06.006.Peer-Reviewed Original ResearchConceptsImmune checkpoint blockadeTumor-associated macrophagesAnti-tumor immunityB16 melanoma tumor growthICB responseImmune checkpoint blockade efficacyPro-tumoral tumor-associated macrophagesTumor-associated macrophage functionMelanoma tumor growthCheckpoint blockadeTumor progressionTumor growthSTING activationInterferon SignalingMitochondrial DNA releaseRNA-based therapeuticsTranscriptional programsInterferonFunctional adaptationMacrophagesDNA releaseComplex IV subunitsEfficacyImmunityElectron transport chainAAnet resolves a continuum of spatially-localized cell states to unveil intratumoral heterogeneity.
Venkat A, Youlten S, San Juan B, Purcell C, Gupta S, Amodio M, Neumann D, Lock J, Westacott A, McCool C, Burkhardt D, Benz A, Mollbrink A, Lundeberg J, van Dijk D, Holst J, Goldstein L, Kummerfeld S, Krishnaswamy S, Chaffer C. AAnet resolves a continuum of spatially-localized cell states to unveil intratumoral heterogeneity. Cancer Discovery 2025, of1-of27. PMID: 40552975, DOI: 10.1158/2159-8290.cd-24-0684.Peer-Reviewed Original ResearchLung adenocarcinoma-derived IFN-γ promotes growth by modulating CD8+ T cell production of CCR5 chemokines
Kratzmeier C, Taheri M, Mei Z, Lim I, Khalil M, Carter-Cooper B, Fanaroff R, Ong C, Schneider E, Chang S, Leyder E, Li D, Luzina I, Banerjee A, Krupnick A. Lung adenocarcinoma-derived IFN-γ promotes growth by modulating CD8+ T cell production of CCR5 chemokines. Journal Of Clinical Investigation 2025, 135: e191070. PMID: 40553564, PMCID: PMC12404755, DOI: 10.1172/jci191070.Peer-Reviewed Original ResearchCD8+ T cellsIFN-gCCR5 chemokinesT cellsCD4+Foxp3+ T regulatory cellsCD8+ T-cell productionCancer cellsHuman lung cancer patientsLevels of IFN-gT regulatory cellsMurine lung adenocarcinomaLung adenocarcinoma modelLung cancer patientsMechanisms of immunoregulationCell line modelsLung cancer cellsTumor bedAdenocarcinoma modelTh1 cytokinesTumor microenvironmentImmunological environmentImmunoregulatory pathwaysCarcinogen-inducedTumor growthLung cancerNeuronal ALKAL2 and its ALK receptor contribute to the development of colitis-associated colorectal cancer
Delanne-Cuménal M, Defaye M, Delanne-Cuménal A, Ahmed M, Ho V, Abdullah N, Alhassoun M, Svendsen K, Mager L, Schlessinger J, Hirota S, Altier C. Neuronal ALKAL2 and its ALK receptor contribute to the development of colitis-associated colorectal cancer. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2500632122. PMID: 40493183, PMCID: PMC12184428, DOI: 10.1073/pnas.2500632122.Peer-Reviewed Original ResearchConceptsColitis-associated colorectal cancerAnaplastic lymphoma kinaseColorectal cancerAnaplastic lymphoma kinase activityColitis-associated colorectal cancer progressionAnaplastic lymphoma kinase receptorTRPV1+ nociceptorsDevelopment of colitis-associated colorectal cancerMouse colonic organoidsALK signalingInflammatory painTumor burdenTreatment resistanceSensory neuronsTumor growthColonic organoidsALKAL2Colonic mucosaOverall inflammationCancer progressionCancerIn vivoTRPV1NeuronsInflammationComprehensive molecular and immune characterization of adrenergic stress-signaling receptor ADRB2 in triple negative breast cancer (TNBC).
Deshmukh S, Wu S, Xiu J, Hong C, Yao S, Sudmeier L, Kalinski P, Chalasani P, Repasky E, Ernstoff M, Leone J, Chumsri S, Graff S, Lustberg M, Sledge G, Kalinsky K, Gandhi S. Comprehensive molecular and immune characterization of adrenergic stress-signaling receptor ADRB2 in triple negative breast cancer (TNBC). Journal Of Clinical Oncology 2025, 43: 1107-1107. DOI: 10.1200/jco.2025.43.16_suppl.1107.Peer-Reviewed Original ResearchTriple negative breast cancerBreast cancerOverall survivalTumor microenvironmentReal-world overall survivalADRB2 gene expressionNegative breast cancerImmune cell fractionsB2 adrenergic receptorPromote tumor growthMann-Whitney U testHighest survival benefitTriple negative breast cancer samplesKaplan-Meier estimatesSurvival benefitImmunological featuresGene expressionPreclinical modelsImmune characterizationTumor growthMann-WhitneyObservational studyU testADRB2RNA expressionWeight Loss Is Protective in Preclinical Breast Cancer Models: Interactions with the Anticancer Immune Response.
Sassoon R, Perry R. Weight Loss Is Protective in Preclinical Breast Cancer Models: Interactions with the Anticancer Immune Response. Cancer Prevention Research 2025, 18: 437-438. PMID: 40421602, DOI: 10.1158/1940-6207.capr-25-0168.Peer-Reviewed Original ResearchICR miceIntermittent calorie restrictionE0771 breast cancer cellsPreclinical breast cancer modelsRate of tumor growthTriple-negative breast cancerAnticancer immune responseBreast cancer modelBreast cancer cellsCancer prevention researchAntitumor immunityHigh-fat dietTumor sizeImmune dysfunctionPreclinical evidenceLean controlsPoor prognosisCancer modelsBreast cancerTumor growthOld miceObesogenic dietAdvanced ageIncreased riskImmune responseMultimodal imaging reveals gliomas are cooler than normal tissue
Coman D, Herman P, Rao J, Mihailovic J, Huang Y, Kaneko G, Hyder F. Multimodal imaging reveals gliomas are cooler than normal tissue. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2025 DOI: 10.58530/2025/1939.Peer-Reviewed Original ResearchThe implementation of artificial intelligence in serial monitoring of post gamma knife vestibular schwannomas: A pilot study
Singh M, Jester N, Lorr S, Briano A, Schwartz N, Mahajan A, Chiang V, Tommasini S, Wiznia D, Buono F. The implementation of artificial intelligence in serial monitoring of post gamma knife vestibular schwannomas: A pilot study. Clinical Imaging 2025, 123: 110495. PMID: 40388858, DOI: 10.1016/j.clinimag.2025.110495.Peer-Reviewed Original ResearchConceptsGamma knife radiosurgeryVestibular schwannomaPost-GKSTumor growthVS volumeHalting tumor growthRetrospective cohort studyAssess treatment efficacyManual segmentationHearing lossBenign tumorsPaired t-testT1-weighted MRI scansAssess statistical significanceCohort studyDice similarity coefficientNeurological functionTreatment efficacyClinical monitoringMRI scansStatistical significancePercentage changeSchwannomaSpatial overlapTumorImpact of radiation therapy on the immunological tumor microenvironment
Guilbaud E, Naulin F, Meziani L, Deutsch E, Galluzzi L. Impact of radiation therapy on the immunological tumor microenvironment. Cell Chemical Biology 2025, 32: 678-693. PMID: 40280118, DOI: 10.1016/j.chembiol.2025.04.001.Peer-Reviewed Original ResearchConceptsImmunological tumor microenvironmentRadiation therapyTumor microenvironmentExternal beam radiation therapyImpact of radiation therapyBeam radiation therapyImpact tumor growthIrradiated cancer cellsEffects of RTModern cancer managementMalignant cellsPalliative settingImmune cellsTumor ecosystemTumor growthCancer managementTherapeutic windowClinical effectsCancer cellsNormal cellsCellular mechanismsHealthy tissueCytotoxic effectsTherapyDNA damageSex-specific effects of exogenous asparagine on colorectal tumor growth, 17β-estradiol levels, and aromatase
Aladelokun O, Benitez K, Wang Y, Jain A, Berardi D, Maroun G, Shen X, Roper J, Gibson J, Sumigray K, Khan S, Johnson C. Sex-specific effects of exogenous asparagine on colorectal tumor growth, 17β-estradiol levels, and aromatase. Pharmacological Research 2025, 215: 107736. PMID: 40228761, PMCID: PMC12100670, DOI: 10.1016/j.phrs.2025.107736.Peer-Reviewed Original ResearchTumor-specific survivalColorectal cancerTumor growthR2G2 miceIncreased serum estradiol levelsSerum estradiol levelsSub-populations of macrophagesAssociated with cancer prognosisSuppressed tumor growthColorectal tumor growthExogenous asparagineColorectal cancer developmentColorectal cancer cellsNegative feed-back effectEstradiol levelsGlutamate levelsSex-related differencesSex-specific effectsMale miceCancer prognosisAsparagine supplementationCancer progressionMiceDecreased numberTumorAn in vivo screen identifies NAT10 as a master regulator of brain metastasis
Chen J, Xu P, Cai W, Chen H, Wingrove E, Shi X, Li W, Biancon G, Zhang M, Balabaki A, Krop E, Asare E, Zhang Y, Yin M, Tebaldi T, Meier J, Westbrook T, Halene S, Liu Y, Shen H, Nguyen D, Yan Q. An in vivo screen identifies NAT10 as a master regulator of brain metastasis. Science Advances 2025, 11: eads6021. PMID: 40138393, PMCID: PMC11939035, DOI: 10.1126/sciadv.ads6021.Peer-Reviewed Original ResearchConceptsPhosphoserine aminotransferase 1Metastasis in vivoIn vivo screeningRNA helicase domainRegulator of brain metastasisMetastatic breast cancer cellsBrain metastasis in vivoBrain metastasesRNA helicaseCell growth in vitroBreast cancer cellsCancer cell proliferationSerine biosynthesisEpigenetic regulationGrowth in vitroNAT10Migration in vitroCancer cellsTumor growthCell proliferationPrimary tumor growthDrivers of brain metastasesRNACancer metastasisCancer-related deathsMetabolism of Choline and Deuterated Choline Detected by 1H–14N 2D Heteronuclear Single-Quantum Coherence (HSQC) NMR
de Graaf R, Thomas M, De Feyter H. Metabolism of Choline and Deuterated Choline Detected by 1H–14N 2D Heteronuclear Single-Quantum Coherence (HSQC) NMR. Analytical Chemistry 2025, 97: 6586-6593. PMID: 40113557, DOI: 10.1021/acs.analchem.4c06235.Peer-Reviewed Original ResearchConceptsHeteronuclear single-quantum coherenceChemical shift dispersionSingle-quantum coherenceShift dispersionSimultaneous detectionCholine metabolismDetection sensitivityTwo-DimensionalDeuterated cholineDeuterationSequence parametersGlycerophosphocholineCultured cancer cellsBrain tumor tissueProtonTumor growthTumor tissuesPhosphocholineCancer cellsCholine signalRat brainCholine levelsThe development of an artificial intelligence auto-segmentation tool for 3D volumetric analysis of vestibular schwannomas
Jester N, Singh M, Lorr S, Tommasini S, Wiznia D, Buono F. The development of an artificial intelligence auto-segmentation tool for 3D volumetric analysis of vestibular schwannomas. Scientific Reports 2025, 15: 5918. PMID: 39966622, PMCID: PMC11836447, DOI: 10.1038/s41598-025-88589-x.Peer-Reviewed Original ResearchConceptsGround-truth datasetDice scoreVestibular schwannomaImage processing accuracyVolumetric analysisML-based algorithmsMeasuring tumor sizeMean dice scoreAuto-segmentation toolAccurate AIAI modelsTumor sizeTumor modelVS tumorsTumor growthTesting stageAI-LTumorImage processing softwareClinical practicePatient recruitmentProcessing softwareSchwannomaDatasetManual segmentation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply