2025
Intratumoral IL12 mRNA administration activates innate and adaptive pathways in checkpoint inhibitor-resistant tumors resulting in complete responses
Lakshmipathi J, Santha S, Li M, Qian Y, Roy S, Luheshi N, Politi K, Bosenberg M, Eyles J, Muthusamy V. Intratumoral IL12 mRNA administration activates innate and adaptive pathways in checkpoint inhibitor-resistant tumors resulting in complete responses. Cancer Immunology, Immunotherapy 2025, 74: 250. PMID: 40560386, PMCID: PMC12198101, DOI: 10.1007/s00262-025-04105-0.Peer-Reviewed Original ResearchThis study investigates intratumoral IL12 mRNA therapy, showing it effectively reactivates immune responses in checkpoint inhibitor-resistant tumors, leading to significant complete responses, potentially benefiting cancer patients with resistant tumors.Identification of post-translationally modified MHC class I-associated peptides as potential cancer immunotherapeutic targets
Mahoney K, Reser L, Ruiz Cuevas M, Abelin J, Shabanowitz J, Hunt D, Malaker S. Identification of post-translationally modified MHC class I-associated peptides as potential cancer immunotherapeutic targets. Molecular & Cellular Proteomics 2025, 100971. PMID: 40239839, DOI: 10.1016/j.mcpro.2025.100971.Peer-Reviewed Original ResearchCirculating cytotoxic T-cellsMHC class I processing pathwayClass I processing pathwayCancer immunotherapy targetCytotoxic T cellsCancer immunotherapeutic targetsVaccine development effortsModern immunotherapyImmunotherapy targetMHC-associated peptidesImmunotherapeutic targetT cellsMalignant cellsAntigen presentationAberrant signalingMHC-peptideMass spectrometry-based technologiesCancerMHCPost-translational modificationsDysregulationIdentification of post-translationallyPeptideImmunotherapyPathway
2024
CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors
Skoulidis F, Araujo H, Do M, Qian Y, Sun X, Cobo A, Le J, Montesion M, Palmer R, Jahchan N, Juan J, Min C, Yu Y, Pan X, Arbour K, Vokes N, Schmidt S, Molkentine D, Owen D, Memmott R, Patil P, Marmarelis M, Awad M, Murray J, Hellyer J, Gainor J, Dimou A, Bestvina C, Shu C, Riess J, Blakely C, Pecot C, Mezquita L, Tabbó F, Scheffler M, Digumarthy S, Mooradian M, Sacher A, Lau S, Saltos A, Rotow J, Johnson R, Liu C, Stewart T, Goldberg S, Killam J, Walther Z, Schalper K, Davies K, Woodcock M, Anagnostou V, Marrone K, Forde P, Ricciuti B, Venkatraman D, Van Allen E, Cummings A, Goldman J, Shaish H, Kier M, Katz S, Aggarwal C, Ni Y, Azok J, Segal J, Ritterhouse L, Neal J, Lacroix L, Elamin Y, Negrao M, Le X, Lam V, Lewis W, Kemp H, Carter B, Roth J, Swisher S, Lee R, Zhou T, Poteete A, Kong Y, Takehara T, Paula A, Parra Cuentas E, Behrens C, Wistuba I, Zhang J, Blumenschein G, Gay C, Byers L, Gibbons D, Tsao A, Lee J, Bivona T, Camidge D, Gray J, Leighl N, Levy B, Brahmer J, Garassino M, Gandara D, Garon E, Rizvi N, Scagliotti G, Wolf J, Planchard D, Besse B, Herbst R, Wakelee H, Pennell N, Shaw A, Jänne P, Carbone D, Hellmann M, Rudin C, Albacker L, Mann H, Zhu Z, Lai Z, Stewart R, Peters S, Johnson M, Wong K, Huang A, Winslow M, Rosen M, Winters I, Papadimitrakopoulou V, Cascone T, Jewsbury P, Heymach J. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature 2024, 635: 462-471. PMID: 39385035, PMCID: PMC11560846, DOI: 10.1038/s41586-024-07943-7.Peer-Reviewed Original ResearchNon-small-cell lung cancerImmune checkpoint blockadeTumor suppressor genePD-L1Advanced non-small-cell lung cancerCD8+ cytotoxic T cellsSuppressor geneCD4+ effector cellsDual immune checkpoint blockadeMouse modelPD-L1 inhibitor durvalumabSuppressive myeloid cellsPD-L1 inhibitorsImmune-related toxicitiesPD-(L)1 inhibitorsAnti-tumor efficacyCytotoxic T cellsMyeloid cell compartmentAdverse tumor microenvironmentAssociated with higher ratesAnti-tumor activityLoss of Keap1CTLA4 inhibitorsSTK11 alterationsCheckpoint blockade546VP Deep immunoprofiling in inclusion body myositis and trajectory analysis
Roy B, DiStasio M, Hackbarth R, Bahrassa F, Joo D, Pham M, O'Connor K. 546VP Deep immunoprofiling in inclusion body myositis and trajectory analysis. Neuromuscular Disorders 2024, 43: 104441.137. DOI: 10.1016/j.nmd.2024.07.146.Peer-Reviewed Original ResearchCytotoxic T cellsInclusion body myositis patientsInclusion body myositisIdiopathic inflammatory myopathiesT cell repertoireT cellsB cell repertoireHealthy controlsB cellsExpression of cytotoxic markersIBM pathogenesisSpatial transcriptomic analysisAnalysis of peripheral blood mononuclear cellsPeripheral blood mononuclear cellsCD8 T cellsDifferentiation of cytotoxic T cellsT cell differentiation pathwayMemory B cellsBlood mononuclear cellsAbundant plasma cellsAsymmetric muscle weaknessInflammatory myopathiesCytotoxic markersTranscriptome analysis of muscle tissuesPlasma cellsSingle-Cell Analysis Reveals Novel Immune Perturbations in Fibrotic Hypersensitivity Pneumonitis.
Zhao A, Unterman A, Abu Hussein N, Sharma P, Nikola F, Flint J, Yan X, Adams T, Justet A, Sumida T, Zhao J, Schupp J, Raredon M, Ahangari F, Deluliis G, Zhang Y, Buendia-Roldan I, Adegunsoye A, Sperling A, Prasse A, Ryu C, Herzog E, Selman M, Pardo A, Kaminski N. Single-Cell Analysis Reveals Novel Immune Perturbations in Fibrotic Hypersensitivity Pneumonitis. American Journal Of Respiratory And Critical Care Medicine 2024, 210: 1252-1266. PMID: 38924775, PMCID: PMC11568434, DOI: 10.1164/rccm.202401-0078oc.Peer-Reviewed Original ResearchFibrotic hypersensitivity pneumonitisIdiopathic pulmonary fibrosisPeripheral blood mononuclear cellsBronchoalveolar lavage cellsBlood mononuclear cellsClassical monocytesHypersensitivity pneumonitisPulmonary fibrosisT cellsImmune perturbationsLavage cellsMononuclear cellsCD8+ T cellsCytotoxic T cellsInterstitial lung diseaseHypersensitivity pneumonitis patientsCytotoxic CD4Immune aberrationsPneumonic patientsPneumonitisLung diseaseHealthy controlsImmune mechanismsPatient cellsSingle-cell transcriptomicsTumor expressed BCAM impedes anti-tumor T cell immunity and can be targeted therapeutically
Flies D, Tian L, O'Neill R, Fitzgerald D, Sharee S, Shaik J, Bosiacki J, Paucarmayta A, Prajapati K, Langermann S, Mrass P. Tumor expressed BCAM impedes anti-tumor T cell immunity and can be targeted therapeutically. The Journal Of Immunology 2024, 212: 0517_5466-0517_5466. DOI: 10.4049/jimmunol.212.supp.0517.5466.Peer-Reviewed Original ResearchAnti-tumor immunityT cell immunityCytotoxic T cellsTumor microenvironmentT cellsTumor growthAnti-tumor T cell immunityT cell anti-tumor immunityExclusion of T cellsIncreased T-cell infiltrationRegulating T cell immunityHuman T cell functionT cell infiltrationInhibitor of T cell proliferationT cell suppressionHuman tumors in vitroT cell functionReduced tumor growthT cell proliferationDecreased tumor growthTumors in vitroTumor growth in vivoCancer escapeCheckpoint inhibitorsGrowth in vivoNew insights into macrophage polarization and its prognostic role in patients with colorectal cancer liver metastasis
Khanduri I, Maki H, Verma A, Katkhuda R, Anandappa G, Pandurengan R, Zhang S, Mejia A, Tong Z, Solis Soto L, Jadhav A, Wistuba I, Menter D, Kopetz S, Parra E, Vauthey J, Maru D. New insights into macrophage polarization and its prognostic role in patients with colorectal cancer liver metastasis. BJC Reports 2024, 2: 37. PMID: 39516662, PMCID: PMC11523988, DOI: 10.1038/s44276-024-00056-8.Peer-Reviewed Original ResearchColorectal cancer liver metastasesRecurrence-free survivalCancer liver metastasesTumor-associated macrophagesT cell subtypesPreoperative chemotherapyLiver metastasesT cellsColorectal cancer liver metastases patientsM2 macrophagesAssociated with shorter recurrence-free survivalShorter recurrence-free survivalPredictor of favorable prognosisRegulatory T cellsMacrophage polarizationCytotoxic T cellsHelper T cellsDensity of M2 macrophagesCause of mortalityFavorable prognosisPrognostic roleM2 macrophage polarizationTumor biologyTumor samplesColorectal cancerLymphadenopathy and lymph node rejection following facial vascularized composite allotransplantation
Kauke-Navarro M, Sadigh S, Lee C, Panayi A, Knoedler L, Knoedler S, Stoegner V, Huelsboemer L, Jamil A, Ko C, Lian C, Murphy G, Pomahac B. Lymphadenopathy and lymph node rejection following facial vascularized composite allotransplantation. Journal Of Plastic Reconstructive & Aesthetic Surgery 2024, 91: 268-275. PMID: 38430863, DOI: 10.1016/j.bjps.2024.02.024.Peer-Reviewed Original ResearchLymph nodesVascularized Composite AllograftsGranzyme BDonor-derived immune cellsFacial vascularized composite allograftMedian time of presentationFacial Vascularized Composite AllotransplantationImmunological processesGranzyme B expressionCytotoxic T cellsNecrotizing histiocytic lymphadenitisHead and neckRetrospective cohort studyTime of presentationStages of follow-upCoexistence of donorFace transplant patientsBilateral adenopathyIncreased histiocytesSuperficial lymph nodesVascularized Composite AllotransplantationBilateral lymphadenopathyAllograft rejectionTransplant patientsDendritic cells
2023
Variable CD18 expression in a 22‐year‐old female with leukocyte adhesion deficiency I: Clinical case and literature review
Bondarenko A, Boyarchuk O, Sakovich I, Polyakova E, Migas A, Kupchinskaya A, Opalinska A, Reich A, Volianska L, Hilfanova A, Lapiy F, Chernyshova L, Volokha A, Zabara D, Belevtsev M, Shman T, Kukharenko L, Goltsev M, Dubouskaya T, Hancharou A, Ji W, Lakhani S, Lucas C, Aleinikova O, Sharapova S. Variable CD18 expression in a 22‐year‐old female with leukocyte adhesion deficiency I: Clinical case and literature review. Clinical Case Reports 2023, 11: e7791. PMID: 37601427, PMCID: PMC10432584, DOI: 10.1002/ccr3.7791.Peer-Reviewed Original ResearchCD18 expressionLAD-1Effector cytotoxic T cellsPyoderma gangrenosum-like lesionsHematopoietic stem cell transplantationGangrenosum-like lesionsRespiratory tract infectionsStem cell transplantationInflammatory skin diseaseCytotoxic T cellsImmune system imbalanceType 1 deficiencyYears of ageLeukocyte adhesion deficiency (LAD) IWhole-exome sequencingAutosomal recessive disorderAutoinflammatory complicationsInfectious manifestationsTract infectionsCell transplantationRare conditionT cellsOral cavitySkin diseasesClinical casesCancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers 2023, 15: 3076. PMID: 37370686, PMCID: PMC10295869, DOI: 10.3390/cancers15123076.Peer-Reviewed Original ResearchImmune checkpoint inhibitorsLung cancer patientsSmall cell lung cancerCancer patientsTumor microenvironmentLung cancerEffects of ICIsEfficacy of ICIsChimeric antigen receptor cellsCell lung cancer patientsCytotoxic T cellsImmunosuppressive tumor microenvironmentCell-extrinsic mechanismsCell-intrinsic alterationsGreat clinical successLack of responseCheckpoint inhibitorsICI responseTherapeutic responseT cellsDNA damage repair pathwaysClinical successImmunotherapyMetabolic alterationsTherapeutic interventionsCytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine–associated myocarditis
Barmada A, Klein J, Ramaswamy A, Brodsky N, Jaycox J, Sheikha H, Jones K, Habet V, Campbell M, Sumida T, Kontorovich A, Bogunovic D, Oliveira C, Steele J, Hall E, Pena-Hernandez M, Monteiro V, Lucas C, Ring A, Omer S, Iwasaki A, Yildirim I, Lucas C. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine–associated myocarditis. Science Immunology 2023, 8: eadh3455-eadh3455. PMID: 37146127, PMCID: PMC10468758, DOI: 10.1126/sciimmunol.adh3455.Peer-Reviewed Original ResearchConceptsMRNA vaccinesSARS-CoV-2 mRNA vaccinesSARS-CoV-2 mRNA vaccinationC-reactive protein levelsB-type natriuretic peptidePeripheral blood mononuclear cellsCardiac tissue inflammationDeep immune profilingSerum soluble CD163Vaccine-associated myocarditisCohort of patientsBlood mononuclear cellsCytotoxic T cellsLate gadolinium enhancementHypersensitivity myocarditisElevated troponinMRNA vaccinationImaging abnormalitiesNK cellsImmune profilingKiller cellsMyeloid responseNatriuretic peptideHumoral mechanismsInflammatory cytokinesGenomic Profiling of Urothelial Carcinoma <I>in Situ</I> of the Bladder
Anurag M, Strandgaard T, Kim S, Comperat E, Al-Ahmadie H, Inman B, Dyrskjot L, Lerner S. Genomic Profiling of Urothelial Carcinoma in Situ of the Bladder. EMJ Urology 2023, 11: 41-42. DOI: 10.33590/emjurol/10306009.Peer-Reviewed Original ResearchCarcinoma in situUrothelial carcinoma in situCarcinoma in situ lesionsPapillary tumorsWhole-exome sequencingBladder cancerInvasive cancerMolecular subtypesT cellsFFPE samplesAssociated with carcinoma in situPresence of cytotoxic T cellsProgrammed cell death protein 1Formalin-fixed paraffin-embedded (FFPE) tumorsAssociated with invasive cancerCarcinoma in situ samplesCell death protein 1Detecting carcinoma in situExome sequencingLevels of immune cellsRNA sequencingProbability of disease progressionHigh-grade lesionsRegulatory T cellsCytotoxic T cells465 Defining the Immune Profile of Radiation Necrosis Through Single-cell Analysis of Intracranial Lesions
Robert S, Lu B, Arnal-Estape A, Nguyen D, Chiang V. 465 Defining the Immune Profile of Radiation Necrosis Through Single-cell Analysis of Intracranial Lesions. Neurosurgery 2023, 69: 97-98. DOI: 10.1227/neu.0000000000002375_465.Peer-Reviewed Original ResearchRadiation necrosisFluorescence-activated cell sortingImmune profileNatural killer (NK) cellsIncidence of radiation necrosisManagement of brain metastasesMetastatic brain tumor patientsMorbid side effectsTreatment of RNRecurrent metastatic diseaseExpression of Foxp3Cytotoxic T cellsInvasive brain biopsyCellular immune profilesInterleukin-7 receptorBrain tumor patientsBrain metastasesMetastatic diseaseMetastatic tumorsImmune landscapeIntraoperative samplesPatient survivalT cellsBrain biopsyIntracranial lesions
2022
Role of tumor infiltrating lymphocytes and spatial immune heterogeneity in sensitivity to PD-1 axis blockers in non-small cell lung cancer
de Rodas M, Nagineni V, Ravi A, Datar IJ, Mino-Kenudson M, Corredor G, Barrera C, Behlman L, Rimm DL, Herbst RS, Madabhushi A, Riess JW, Velcheti V, Hellmann MD, Gainor J, Schalper KA. Role of tumor infiltrating lymphocytes and spatial immune heterogeneity in sensitivity to PD-1 axis blockers in non-small cell lung cancer. Journal For ImmunoTherapy Of Cancer 2022, 10: e004440. PMID: 35649657, PMCID: PMC9161072, DOI: 10.1136/jitc-2021-004440.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerImmune checkpoint inhibitorsT-cell immunoglobulin mucin-3Cell lung cancerCytotoxic T cellsT cellsImmune heterogeneityLung cancerT cell exhaustion marker expressionPD-L1 positive patientsT cell exhaustion markersAdaptive antitumor immune responsesCell death protein 1Baseline tumor samplesExhaustion marker expressionIndependent NSCLC cohortsTumor immune heterogeneityT-cell densityAntitumor immune responseT cell infiltrationDeath protein 1Multi-institutional cohortActivation gene-3Helper T cellsRole of tumor
2021
Mitochondrial translation is required for sustained killing by cytotoxic T cells
Lisci M, Barton P, Randzavola L, Ma C, Marchingo J, Cantrell D, Paupe V, Prudent J, Stinchcombe J, Griffiths G. Mitochondrial translation is required for sustained killing by cytotoxic T cells. Science 2021, 374: eabe9977. PMID: 34648346, DOI: 10.1126/science.abe9977.Peer-Reviewed Original ResearchConceptsCytotoxic T lymphocytesMitochondrial translationSustained killingT lymphocytesEffector cytotoxic T lymphocytesAcquisition of effector functionsCD8<sup>+</sup> T lymphocytesCytotoxic T lymphocyte killingCytotoxic T cellsT cell receptor activationImpaired mitochondrial translationRegulation of protein translationVirally infected cellsTarget cell-killingCTL killingT cellsMitochondrial requirementsCytosolic translationEffector functionsProtein translationCell-killingKill cancerKilling capacityMitochondrial depletionHomeostatic regulationMycophenolate as Primary Treatment for Immune Checkpoint Inhibitor Induced Acute Kidney Injury in a Patient with Concurrent Immunotherapy-Associated Diabetes: A Case Report.
Jessel S, Austin M, Kluger HM. Mycophenolate as Primary Treatment for Immune Checkpoint Inhibitor Induced Acute Kidney Injury in a Patient with Concurrent Immunotherapy-Associated Diabetes: A Case Report. Clinical Oncology Case Reports 2021, 4 PMID: 33763663, PMCID: PMC7985664.Peer-Reviewed Original ResearchAcute kidney injuryImmune checkpoint inhibitorsKidney injuryCheckpoint inhibitorsT cellsImmune-related adverse eventsCycles of nivolumabEffective frontline therapyAggressive fluid resuscitationSteroid-sparing agentRegulatory T cellsInitiation of insulinT cell responsesCytotoxic T cellsMycophenolate mofetilAdverse eventsFrontline therapyRenal functionComplete responseFluid resuscitationKidney functionCase reportMetastatic melanomaPrimary treatmentTumor types
2020
The Combination of CD8αα and Peptide-MHC-I in a Face-to-Face Mode Promotes Chicken γδT Cells Response
Liu Y, Chen R, Liang R, Sun B, Wu Y, Zhang L, Kaufman J, Xia C. The Combination of CD8αα and Peptide-MHC-I in a Face-to-Face Mode Promotes Chicken γδT Cells Response. Frontiers In Immunology 2020, 11: 605085. PMID: 33329601, PMCID: PMC7719794, DOI: 10.3389/fimmu.2020.605085.Peer-Reviewed Original ResearchConceptsT cellsHighly pathogenic influenza virusesTCR-pMHC-I interactionPeptide-MHC-ICD8<sup>+</sup> T cellsThymic T cell selectionT cell cross-reactivityT cell responsesCytotoxic T cellsT cell selectionBinding modeCross-reactivityInfluenza virusAg sensitizationAntigen recognitionPMHC-ICell responsesBinding orientationTebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma
Middleton MR, McAlpine C, Woodcock VK, Corrie P, Infante JR, Steven NM, Evans TRJ, Anthoney A, Shoushtari AN, Hamid O, Gupta A, Vardeu A, Leach E, Naidoo R, Stanhope S, Lewis S, Hurst J, O’Kelly I, Sznol M. Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma. Clinical Cancer Research 2020, 26: 5869-5878. PMID: 32816891, PMCID: PMC9210997, DOI: 10.1158/1078-0432.ccr-20-1247.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAtaxia Telangiectasia Mutated ProteinsCD3 ComplexCD8-Positive T-LymphocytesCell ProliferationChemokine CXCL10Cytotoxicity, ImmunologicDisease-Free SurvivalFemaleGene Expression Regulation, Neoplasticgp100 Melanoma AntigenHumansImmunityInterferon-gammaMaleMelanomaMiddle AgedNeoplasm ProteinsReceptors, Antigen, T-CellReceptors, CXCR3Recombinant Fusion ProteinsTumor MicroenvironmentConceptsT cellsBispecific fusion proteinMetastatic melanomaT cell receptorSerum CXCL10Multicenter phase I/II trialPhase I/II trialTreatment-related adverse eventsHigh-affinity T-cell receptorsAppearance of rashMetastatic cutaneous melanomaAntitumor immune responseOverall survival rateMetastatic uveal melanomaCytotoxic T cellsPathway-related markersTumor biopsy samplesMechanism of actionII trialAdverse eventsAdvanced melanomaBroad therapeutic potentialPatient survivalPatient cohortCutaneous melanomaMorphological spectrum of immune check‐point inhibitor therapy‐associated gastritis
Johncilla M, Grover S, Zhang X, Jain D, Srivastava A. Morphological spectrum of immune check‐point inhibitor therapy‐associated gastritis. Histopathology 2020, 76: 531-539. PMID: 31692018, DOI: 10.1111/his.14029.Peer-Reviewed Original ResearchConceptsImmune check-point inhibitor therapyCheck-point inhibitor therapyImmune-related adverse eventsImmune check point inhibitorsMorphological spectrumIntra-epithelial lymphocytosisCheck point inhibitorsChronic active gastritisInflammatory bowel diseaseMedical chart reviewCytotoxic T cellsDrug-induced gastritisPredominant histological patternDistribution of injuriesVariety of tumorsMechanism of actionSteroid therapyGastrointestinal injuryActive gastritisAdverse eventsChart reviewClinical suspicionMedication withdrawalBowel diseaseInhibitor therapyImmune Cell PD-L1 Colocalizes with Macrophages and Is Associated with Outcome in PD-1 Pathway Blockade Therapy
Liu Y, Zugazagoitia J, Ahmed FS, Henick BS, Gettinger S, Herbst RS, Schalper KA, Rimm DL. Immune Cell PD-L1 Colocalizes with Macrophages and Is Associated with Outcome in PD-1 Pathway Blockade Therapy. Clinical Cancer Research 2020, 26: 970-977. PMID: 31615933, PMCID: PMC7024671, DOI: 10.1158/1078-0432.ccr-19-1040.Peer-Reviewed Original ResearchConceptsPD-L1 expressionHigh PD-L1 expressionPD-L1 levelsPD-L1Immune cellsTumor cellsT cellsHigh PD-L1 levelsPredominant immune cell typeNon-small cell lung cancer (NSCLC) casesDifferent immune cell subsetsCell lung cancer casesElevated PD-L1High PD-L1Better overall survivalDeath ligand 1Natural killer cellsImmune cell subsetsMultiple immune cellsCytotoxic T cellsLung cancer casesImmune cell typesCD68 levelsCell typesBlockade therapy
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply