2025
Weight Loss Is Protective in Preclinical Breast Cancer Models: Interactions with the Anticancer Immune Response.
Sassoon R, Perry R. Weight Loss Is Protective in Preclinical Breast Cancer Models: Interactions with the Anticancer Immune Response. Cancer Prevention Research 2025, of1-of2. PMID: 40421602, DOI: 10.1158/1940-6207.capr-25-0168.Peer-Reviewed Original ResearchICR miceIntermittent calorie restrictionE0771 breast cancer cellsPreclinical breast cancer modelsRate of tumor growthTriple-negative breast cancerAnticancer immune responseBreast cancer modelBreast cancer cellsCancer prevention researchAntitumor immunityHigh-fat dietTumor sizeImmune dysfunctionPreclinical evidenceLean controlsPoor prognosisCancer modelsBreast cancerTumor growthOld miceObesogenic dietAdvanced ageIncreased riskImmune responseTriple negative breast cancer cells acquire lymphocyte proteins and genomic DNA during trogocytosis with T cells
Sivakoses A, Marcarian H, Arias A, Lam A, Ihedioha O, Santamaria-Barria J, Gurtner G, Bothwell A. Triple negative breast cancer cells acquire lymphocyte proteins and genomic DNA during trogocytosis with T cells. PeerJ 2025, 13: e19236. PMID: 40183054, PMCID: PMC11967428, DOI: 10.7717/peerj.19236.Peer-Reviewed Original ResearchConceptsTriple negative breast cancerTriple negative breast cancer cellsT cellsCancer cellsTumor cell expressionNegative breast cancer cellsNegative breast cancerGenomic DNABreast cancer cellsCluster of differentiationSpecific proteinsT cell-specific proteinsLymphoid markersBreast cancerDonor cellsCell expressionCD45Immune detectionFlow cytometryPatient samplesTrogocytosisCD45RACo-CultureImmunofluorescence imagingLymphocyte proteinAn in vivo screen identifies NAT10 as a master regulator of brain metastasis
Chen J, Xu P, Cai W, Chen H, Wingrove E, Shi X, Li W, Biancon G, Zhang M, Balabaki A, Krop E, Asare E, Zhang Y, Yin M, Tebaldi T, Meier J, Westbrook T, Halene S, Liu Y, Shen H, Nguyen D, Yan Q. An in vivo screen identifies NAT10 as a master regulator of brain metastasis. Science Advances 2025, 11: eads6021. PMID: 40138393, PMCID: PMC11939035, DOI: 10.1126/sciadv.ads6021.Peer-Reviewed Original ResearchConceptsPhosphoserine aminotransferase 1Metastasis in vivoIn vivo screeningRNA helicase domainRegulator of brain metastasisMetastatic breast cancer cellsBrain metastasis in vivoBrain metastasesRNA helicaseCell growth in vitroBreast cancer cellsCancer cell proliferationSerine biosynthesisEpigenetic regulationGrowth in vitroNAT10Migration in vitroCancer cellsTumor growthCell proliferationPrimary tumor growthDrivers of brain metastasesRNACancer metastasisCancer-related deaths
2024
Class Effect Unveiled: PPARγ Agonists and MEK Inhibitors in Cancer Cell Differentiation
Ben-Yishay R, Globus O, Balint-Lahat N, Arbili-Yarhi S, Bar-Hai N, Bar V, Aharon S, Kosenko A, Zundelevich A, Berger R, Ishay-Ronen D. Class Effect Unveiled: PPARγ Agonists and MEK Inhibitors in Cancer Cell Differentiation. Cells 2024, 13: 1506. PMID: 39273076, PMCID: PMC11394433, DOI: 10.3390/cells13171506.Peer-Reviewed Original ResearchConceptsMEK inhibitorsBreast cancer cellsEpithelial-to-mesenchymal transitionCancer cellsPPARg agonistsDrug resistanceTherapeutic approachesTriple-negative breast cancerMurine breast cancer cellsAggressive breast cancer subtypeDevelopment of drug resistanceCancer cell plasticityBreast cancer subtypesCombination of pioglitazoneOvercome drug resistanceDedifferentiated cancer cellsBreast cancer progressionCancer cell differentiationCytoskeleton rearrangementLipid droplet accumulationCell trans-differentiationBreast cancerCancer subtypesCell plasticityTherapeutic strategiesNuclear PKM2 binds pre-mRNA at folded G-quadruplexes and reveals their gene regulatory role
Anastasakis D, Apostolidi M, Garman K, Polash A, Umar M, Meng Q, Scutenaire J, Jarvis J, Wang X, Haase A, Brownell I, Rinehart J, Hafner M. Nuclear PKM2 binds pre-mRNA at folded G-quadruplexes and reveals their gene regulatory role. Molecular Cell 2024, 84: 3775-3789.e6. PMID: 39153475, PMCID: PMC11455610, DOI: 10.1016/j.molcel.2024.07.025.Peer-Reviewed Original ResearchRNA-binding proteinsPre-mRNANon-canonical RNA-binding proteinsGene regulatory roleCancer cellsRNA G-quadruplexesG-quadruplexInvasion of cancer cellsTriple-negative breast cancer cellsBreast cancer cellsEpithelial-to-mesenchymal transitionCancer typesNuclear localizationPrecursor mRNANuclear accumulationGene expressionXenograft mouse modelNuclear PKM2Regulatory roleRG4sPKM2Reduced migrationMouse modelTumor progressionPatient survivalProgestogen-driven B7-H4 contributes to onco-fetal immune tolerance
Yu J, Yan Y, Li S, Xu Y, Parolia A, Rizvi S, Wang W, Zhai Y, Xiao R, Li X, Liao P, Zhou J, Okla K, Lin H, Lin X, Grove S, Wei S, Vatan L, Hu J, Szumilo J, Kotarski J, Freeman Z, Skala S, Wicha M, Cho K, Chinnaiyan A, Schon S, Wen F, Kryczek I, Wang S, Chen L, Zou W. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance. Cell 2024, 187: 4713-4732.e19. PMID: 38968937, PMCID: PMC11344674, DOI: 10.1016/j.cell.2024.06.012.Peer-Reviewed Original ResearchB7-H4Immune toleranceProgesterone receptorCD8<sup>+</sup> T cell exhaustionImmune tolerance checkpointB7-H4 expressionT cell exhaustionImmune tolerance mechanismsMaternal-fetal interfaceBreast cancer modelFemale sex hormonesBreast cancer progressionBreast cancer cellsTolerance checkpointsFetal resorptionHuman cancer typesHormonal screeningImmune activationPregnancy modelCancer modelsSex hormonesCell exhaustionPR antagonistsGenetic deficiencyCancer cellsNCS-1 protein regulates TRPA1 channel through the PI3K pathway in breast cancer and neuronal cells
Sánchez J, Alemán A, Henao J, Olaya J, Ehrlich B. NCS-1 protein regulates TRPA1 channel through the PI3K pathway in breast cancer and neuronal cells. Journal Of Physiology And Biochemistry 2024, 80: 451-463. PMID: 38564162, PMCID: PMC11074019, DOI: 10.1007/s13105-024-01016-z.Peer-Reviewed Original ResearchConceptsTransient receptor potential channel ankyrin 1Breast cancerPI3K pathwayNCS-1Chemotherapy-induced peripheral neuropathyCa2+ channelsK pathwayCa2+ influxNCS-1 expressionBreast cancer cellsCa2+ sensorCa2+ homeostasisCa2+ dynamicsNeuronal calcium sensor-1MDA-MB-231Fura-2Open probabilityPain sensationAnkyrin 1Peripheral neuropathyTRPA1 channelsCo-ImmunoprecipitationChannel functionRegulatory componentsCellular pathwaysUnique Spatial Transcriptomic Profiling of the Murine Femoral Fracture Callus: A Preliminary Report
Jiang W, Caruana D, Back J, Lee F. Unique Spatial Transcriptomic Profiling of the Murine Femoral Fracture Callus: A Preliminary Report. Cells 2024, 13: 522. PMID: 38534368, PMCID: PMC10969736, DOI: 10.3390/cells13060522.Peer-Reviewed Original ResearchConceptsMDA-MB-231Transcriptomic platformsGene expressionSpatially localized gene expressionMDA-MB-231 metastatic breast cancer cellsSpatial transcriptomics platformGenetic expression changesFracture healingMetastatic breast cancer cellsBreast cancer cellsImpaired fracture healingSingle-cell RNALocal gene expressionSpatial transcriptomic profilingFracture callus formationGenomic heterogeneitySequencing techniquesDisrupt bone homeostasisTranscriptome profilingIn situ hybridizationExpression changesSoft callusPathological fracturesWild-typeSpatial transcriptomicsGenomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4
Saotome M, Poduval D, Grimm S, Nagornyuk A, Gunarathna S, Shimbo T, Wade P, Takaku M. Genomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4. Nucleic Acids Research 2024, 52: 3607-3622. PMID: 38281186, PMCID: PMC11039999, DOI: 10.1093/nar/gkae025.Peer-Reviewed Original ResearchConceptsTranscription factorsBreast cancer cellsBinding motifTranscription factor binding motifsTranscription factor-DNA interactionsLineage-determining transcription factorsCellular reprogrammingProof-reading enzymeBasal breast cancer cellsChromatin-binding activityCancer cellsBinding site selectionEukaryotic genomesNucleosome positioningChromatin accessibilityChromatin openingGene activationCHD4Gene expressionChromatinTranscriptionBinding activityFrequent mutationsUnoccupied sitesExquisite specificity
2023
5-Azacytidine- and retinoic-acid-induced reprogramming of DCCs into dormancy suppresses metastasis via restored TGF-β-SMAD4 signaling
Singh D, Carcamo S, Farias E, Hasson D, Zheng W, Sun D, Huang X, Cheung J, Nobre A, Kale N, Sosa M, Bernstein E, Aguirre-Ghiso J. 5-Azacytidine- and retinoic-acid-induced reprogramming of DCCs into dormancy suppresses metastasis via restored TGF-β-SMAD4 signaling. Cell Reports 2023, 42: 112560. PMID: 37267946, PMCID: PMC10592471, DOI: 10.1016/j.celrep.2023.112560.Peer-Reviewed Original ResearchConceptsDisseminated cancer cellsCancer cellsDNA methylation inhibitorNon-proliferative stateAnti-proliferative functionTranscriptional reprogrammingChromatin remodelingRetinoic acid receptorsTranscriptional programsMethylation inhibitorGrowth factor βMicroenvironmental signalsSMAD4 knockdownBreast cancer cellsDormancySuppress metastasisRARα-specific agonistLung metastasis formationNeck squamous cell carcinomaReprogrammingRetinoic acidSquamous cell carcinomaTrans retinoic acidFactor βMetastasis formation
2022
Fluid shear stress enhances proliferation of breast cancer cells via downregulation of the c-subunit of the F1FO ATP synthase
Park HA, Brown SR, Jansen J, Dunn T, Scott M, Mnatsakanyan N, Jonas EA, Kim Y. Fluid shear stress enhances proliferation of breast cancer cells via downregulation of the c-subunit of the F1FO ATP synthase. Biochemical And Biophysical Research Communications 2022, 632: 173-180. PMID: 36209586, PMCID: PMC10024463, DOI: 10.1016/j.bbrc.2022.09.084.Peer-Reviewed Original ResearchHuman WDR5 promotes breast cancer growth and metastasis via KMT2-independent translation regulation
Cai WL, Chen JF, Chen H, Wingrove E, Kurley SJ, Chan LH, Zhang M, Arnal-Estape A, Zhao M, Balabaki A, Li W, Yu X, Krop ED, Dou Y, Liu Y, Jin J, Westbrook TF, Nguyen DX, Yan Q. Human WDR5 promotes breast cancer growth and metastasis via KMT2-independent translation regulation. ELife 2022, 11: e78163. PMID: 36043466, PMCID: PMC9584608, DOI: 10.7554/elife.78163.Peer-Reviewed Original ResearchConceptsBreast cancer cellsMetastatic breast cancerBreast cancerRibosomal gene expressionCancer cellsKnockdown of WDR5Vivo genetic screenReversible epigenetic mechanismsGenetic screenTranslation regulationTriple-negative breast cancerEpigenetic regulatorsEpigenetic mechanismsBreast cancer growthCancer-related deathTranslation efficiencyWDR5Novel therapeutic strategiesTranslation rateGene expressionCell growthAdvanced diseaseEffective therapyMetastatic capabilityPotent suppressionRedox regulation of RAD51 Cys319 and homologous recombination by peroxiredoxin 1
Skoko J, Cao J, Gaboriau D, Attar M, Asan A, Hong L, Paulsen C, Ma H, Liu Y, Wu H, Harkness T, Furdui C, Manevich Y, Morrison C, Brown E, Normolle D, Spies M, Spies M, Carroll K, Neumann C. Redox regulation of RAD51 Cys319 and homologous recombination by peroxiredoxin 1. Redox Biology 2022, 56: 102443. PMID: 36058112, PMCID: PMC9450138, DOI: 10.1016/j.redox.2022.102443.Peer-Reviewed Original ResearchConceptsRAD51 foci formationFoci formationRedox regulationHomologous recombination DNA repair pathwayHR DNA repairProtein binding partnersPoly (ADP-ribose) polymeraseDNA repair pathwaysDAz-2Rad51 proteinSensitization of cellsRad51 filamentsBinding partnerHomologous recombinationDNA repairCysteine oxidationRepair pathwaysMediator proteinsHuman breast cancer cellsCellular responsesPeroxiredoxin 1Breast cancer cellsDNA damagePRDX1Cys319Dual-targeted enzyme-sensitive hyaluronic acid nanogels loading paclitaxel for the therapy of breast cancer
Gao D, Asghar S, Ye J, Zhang M, Hu R, Wang Y, Huang L, Yuan C, Chen Z, Xiao Y. Dual-targeted enzyme-sensitive hyaluronic acid nanogels loading paclitaxel for the therapy of breast cancer. Carbohydrate Polymers 2022, 294: 119785. PMID: 35868795, DOI: 10.1016/j.carbpol.2022.119785.Peer-Reviewed Original ResearchConceptsBreast cancerHyaluronic acid nanogelsTumor-bearing BALB/c miceTherapy of breast cancerTreatment of breast cancerTargeting breast cancerBreast cancer cellsRat pharmacokinetic profilesIn vivo studiesTherapeutic efficacyBALB/c miceEntrapment efficiencyPharmacokinetic profileCancer cellsClearance rateCD44 receptorControl groupCancerPaclitaxelDrug loadingHigher cytotoxicityReceptorsCD44DrugCellsMicrotentacle Formation in Ovarian Carcinoma
Reader JC, Fan C, Ory EC, Ju J, Lee R, Vitolo MI, Smith P, Wu S, Ching MMN, Asiedu EB, Jewell CM, Rao GG, Fulton A, Webb TJ, Yang P, Santin AD, Huang HC, Martin SS, Roque DM. Microtentacle Formation in Ovarian Carcinoma. Cancers 2022, 14: 800. PMID: 35159067, PMCID: PMC8834106, DOI: 10.3390/cancers14030800.Peer-Reviewed Original ResearchHuman ovarian surface epitheliumOvarian cancerCell linesCancer cellsMajor therapeutic challengeIntraperitoneal drug deliveryOvarian surface epitheliumOvarian cancer metastasisNew therapeutic targetsDevelopment of chemoresistanceEffect of treatmentBreast cancer cellsOSC cell linesExtrapelvic metastasesMalignant ascitesTherapeutic challengeOvarian carcinomaSurface epitheliumTherapeutic targetMetastatic potentialAscitesCancer metastasisΒ-tubulin isotypesIndividual cancer cellsMetastasisGATA3 Truncation Mutants Alter EMT Related Gene Expression via Partial Motif Recognition in Luminal Breast Cancer Cells
Saotome M, Poduval D, Nair R, Cooper M, Takaku M. GATA3 Truncation Mutants Alter EMT Related Gene Expression via Partial Motif Recognition in Luminal Breast Cancer Cells. Frontiers In Genetics 2022, 13: 820532. PMID: 35154280, PMCID: PMC8831884, DOI: 10.3389/fgene.2022.820532.Peer-Reviewed Original ResearchMutant cell linesEpithelial-to-mesenchymal transitionCell linesGATA3 mutationsSplice site deletionLuminal breast cancer cell linesLuminal breast cancer cellsGene expression patternsMutant-expressing cellsBreast cancer cell linesMotif enrichmentChromatin localizationBreast cancer cellsMotif recognitionTruncation mutantsCancer cell linesSite deletionTranscriptome analysisTruncating mutationsBreast cancer developmentBreast cancer patientsBreast cancer characterizationRelated gene expressionMutated genesGene expressionAntiproliferative effects of olanzapine against MCF-7 human breast cancer cells and its molecular interactions with surviving
Nuthalapati P. Antiproliferative effects of olanzapine against MCF-7 human breast cancer cells and its molecular interactions with surviving. Brain Tumor Research And Treatment 2022, 10: s141. DOI: 10.14791/btrt.2022.10.f-2510.Peer-Reviewed Original Research
2021
MAL2 mediates the formation of stable HER2 signaling complexes within lipid raft-rich membrane protrusions in breast cancer cells
Jeong J, Shin JH, Li W, Hong JY, Lim J, Hwang JY, Chung JJ, Yan Q, Liu Y, Choi J, Wysolmerski J. MAL2 mediates the formation of stable HER2 signaling complexes within lipid raft-rich membrane protrusions in breast cancer cells. Cell Reports 2021, 37: 110160. PMID: 34965434, PMCID: PMC8762588, DOI: 10.1016/j.celrep.2021.110160.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic Agents, ImmunologicalBreast NeoplasmsCell ProliferationCytoskeletal ProteinsDrug Resistance, NeoplasmEndocytosisFemaleHumansMembrane MicrodomainsMyelin and Lymphocyte-Associated Proteolipid ProteinsPhosphoproteinsPlasma Membrane Calcium-Transporting ATPasesReceptor, ErbB-2Sodium-Hydrogen ExchangersTrastuzumabTumor Cells, CulturedConceptsLipid raft formationBreast cancer cellsLipid raftsLipid raft resident proteinsCancer cellsRaft formationRaft-resident proteinsProximity ligation assayProtein complexesMembrane protrusionsProtein interactionsPlasma membraneLigation assayMAL2Membrane stabilityStructural organizationPotential therapeutic targetPhysical interactionMembrane retentionProteinRaftsTherapeutic targetCellsIntracellular calcium concentrationLow intracellular calcium concentrationInflammatory conversion of quiescent osteoblasts by metastatic breast cancer cells through pERK1/2 aggravates cancer-induced bone destruction
Back J, Nguyen MN, Li L, Lee S, Lee I, Chen F, Gillinov L, Chung YH, Alder KD, Kwon HK, Yu KE, Dussik CM, Hao Z, Flores MJ, Kim Y, Ibe IK, Munger AM, Seo SW, Lee FY. Inflammatory conversion of quiescent osteoblasts by metastatic breast cancer cells through pERK1/2 aggravates cancer-induced bone destruction. Bone Research 2021, 9: 43. PMID: 34588427, PMCID: PMC8481290, DOI: 10.1038/s41413-021-00158-w.Peer-Reviewed Original ResearchCancer-induced bone destructionBreast cancer cellsOsteolytic breast cancerBone homeostasisCancer growthCancer cellsBone destructionInflammatory osteolysisBreast cancerBreast cancer-induced bone destructionOsteolytic breast cancer metastasesPromising adjuvant therapyERK1/2 activationMEK1 expressionBreast cancer metastasisMetastatic breast cancer cellsActivation of pERK1/2Inflammatory conversionAdjuvant therapyPathological fracturesHuman pathological specimensBone microenvironmentPathological specimensSkeletal diseasePathway inhibitorReactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network
Liang Y, Lu Q, Li W, Zhang D, Zhang F, Zou Q, Chen L, Tong Y, Liu M, Wang S, Li W, Ren X, Xu P, Yang Z, Dong S, Zhang B, Huang Y, Li D, Wang H, Yu W. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Research 2021, 49: 8556-8572. PMID: 34329471, PMCID: PMC8421228, DOI: 10.1093/nar/gkab626.Peer-Reviewed Original ResearchMeSH KeywordsBreast NeoplasmsCarcinogenesisDNA MethylationEnhancer Elements, GeneticEpigenomicsFemaleGene Expression Regulation, NeoplasticGene SilencingHumansMicroRNAsPromoter Regions, GeneticReceptors, EstrogenReceptors, G-Protein-CoupledRegulatory Sequences, Nucleic AcidRNA, NeoplasmTumor Suppressor ProteinsConceptsTumor suppressor geneLowest expression of miRNABreast cancerLow expressionDysfunction of tumor suppressor genesLoss of function of tumor suppressor genesTriple negative breast cancer subtypeCancer developmentFunction of tumor suppressor genesMiR-339Inactivation of tumor suppressor genesClinical breast cancer treatmentTumor suppressor gene inactivationExpression of miRNAsReactivation of tumor suppressor genesBreast cancer subtypesBreast cancer cellsBreast cancer treatmentLuminal A/BPaired breast cancerAberrant histone modificationsGPER1 expressionEpigenetic abnormalitiesCancer subtypesSuppressor gene
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply