Elena Gracheva, PhD

Associate Professor of Cellular and Molecular Physiology and Neuroscience

Research Interests

Physiology, Comparative

Public Health Interests

Environmental Health; Evolution

Research Organizations

Cellular & Molecular Physiology

Interdepartmental Neuroscience Program

Program in Cellular Neuroscience, Neurodegeneration and Repair

Extensive Research Description

My lab is interested in somatosensation and thermoregulation, particularly molecular and evolutionary mechanisms whereby the somatosensory and thermoregulatory systems adapt to the environmental and behavioral needs of an organism. We intend:

(i) To understand, which molecules mediate different types of sensation undernormal and extreme physiological conditions using mammalian hibernation as a naturally reversible model.

(ii) To dissect  mechanism(s) of thermoregulation and thermogenesis using hibernators in their active and torpor physiological states.

Mammalian hibernation is fascinating as it is characterized by prolonged alternating periods of hypothermia (core body temperature drops from 37°C to 2-10°C) in association with unusual resistance of tissues to cold. Despite the robustness of these phenomena, fundamental questions remain about their cellular basis. Mammalian hibernators (thirteen-lined ground squirrels and Syrian hamsters) provide unique natural system for understanding thermotransduction machinery. Moreover, comparisons between phylogenetically related species of hibernators and non-hibernators will provide insights into anatomical, physiological, and genetic factors that support this unique thermo-adaptive process. Due to the complexity and dynamic nature of thesomatosensory and thermoregulatory systems, we are taking an integrated approach using biochemistry, bioinformatics, live-cell imaging, electrophysiology, genomics, behavioral paradigms, and additional cellular and molecular biological techniques to approach these fascinating questions of both physiological and clinical significance.

Mechanisms gleaned from this study could have profound outcomes for human health in regard to:

(i) Inducible and reversible hypothermia.

(ii) Cold tolerance and hypersensitivity.

(iii) Tissue transplantation.

Selected Publications

Edit this profile

Contact Info

Elena Gracheva, PhD
Lab Location
Sterling Hall of Medicine, B-Wing
333 Cedar Street, Rm BE58

New Haven, CT 06510
View on map...
Office Location
Sterling Hall of Medicine, B-Wing
333 Cedar Street, Fl E Rm 36D

New Haven, CT 06510
View on map...
Mailing Address
333 Cedar St SHM BE58
New Haven, CT 06520-8026

The Elena Lab