2025
Role of Chimeric Antigen Receptor–Expressing Cell Therapy in Immune-Mediated Kidney Diseases: A Review
Peng J, Zhang Y, Wang J, Zhang H, Schett G. Role of Chimeric Antigen Receptor–Expressing Cell Therapy in Immune-Mediated Kidney Diseases: A Review. American Journal Of Kidney Diseases 2025 PMID: 40484342, DOI: 10.1053/j.ajkd.2025.04.012.Peer-Reviewed Original ResearchImmune-mediated kidney diseasesB-cell depletionB cellsKidney diseaseCell therapyPlasma cellsTreatment of immune-mediated kidney diseasesB-cell-depleting monoclonal antibodyB-Cell Targeted TherapiesComplete B-cell depletionAutoantibody-producing plasma cellsDeplete plasma cellsMonoclonal antibodiesAntigen-presenting cellsAdaptive immune responsesImmune-mediatedSelf-antigensT cellsImmune cellsImmune responseTherapyInfiltrated tissuesDiseaseAntibodiesCellsB-cell infiltration distinguishes mucosal from skin patterns of rejection in facial vascularized composite allografts
Kauke-Navarro M, Crisler W, Younis N, Khetani R, Sadigh S, Teague J, Ho Sui S, Ko C, Zhan Q, Steuart S, Treister N, Pober J, Azzi J, Clark R, Pomahac B. B-cell infiltration distinguishes mucosal from skin patterns of rejection in facial vascularized composite allografts. American Journal Of Transplantation 2025, 25: 1193-1207. PMID: 39842779, DOI: 10.1016/j.ajt.2025.01.013.Peer-Reviewed Original ResearchFacial Vascularized Composite AllotransplantationPeripheral blood mononuclear cellsB cell infiltrationB cellsMucosal rejectionRejection monitoringFacial vascularized composite allograftT cell-mediated rejectionSigns of immune activationNon-rejection biopsiesGranzyme B expressionB cell populationsInnate-like B cellsBlood mononuclear cellsVascularized Composite AllograftsVascularized Composite AllotransplantationAcute rejectionOral mucosaT cellsPattern of rejectionImmune activationMucosal biopsiesPlasma cellsSkin biopsiesMononuclear cellsSystem vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans
Cortese M, Hagan T, Rouphael N, Wu S, Xie X, Kazmin D, Wimmers F, Gupta S, van der Most R, Coccia M, Aranuchalam P, Nakaya H, Wang Y, Coyle E, Horiuchi S, Wu H, Bower M, Mehta A, Gunthel C, Bosinger S, Kotliarov Y, Cheung F, Schwartzberg P, Germain R, Tsang J, Li S, Albrecht R, Ueno H, Subramaniam S, Mulligan M, Khurana S, Golding H, Pulendran B. System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans. Nature Immunology 2025, 26: 116-130. PMID: 39747435, PMCID: PMC12158788, DOI: 10.1038/s41590-024-02036-z.Peer-Reviewed Original ResearchConceptsHuman bone marrow plasma cellsResponse longevityBone marrow plasma cellsAntibody responseVaccine-induced antibody responsesAntibody response magnitudesH5N1 influenza vaccineMIF-CD74 axisInvestigate immune responsesBlood transcriptional signaturesAS03-adjuvantedInfluenza vaccineMegakaryocyte activityResponse durabilityAnalysis of predictorsPlasma cellsVaccine durabilityImmune responseDay 7Transcriptional signaturePromote survivalCell-cell interactionsAntibodiesPlateletVaccine
2024
Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus
Sanchez G, Hirsch E, VanValkenburg A, Mayer D, Gbedande K, Francis R, Song W, Antao O, Brimmer K, Lemenze A, Stephens R, Johnson W, Weinstein J. Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus. Cell Reports 2024, 43: 114978. PMID: 39527476, PMCID: PMC11682828, DOI: 10.1016/j.celrep.2024.114978.Peer-Reviewed Original ResearchGerminal centersB cellsDifferentiation of autoreactive B cellsLoss of MYCResponse to CD40 signalingPolyclonal B cell activationB cell dysregulationAccumulation of plasma cellsAutoreactive B cellsB cell activationGC B cellsB cell cycleProduction of autoantibodiesB cell signalingDecreased mutation frequencyRepertoire diversityPlasma cellsAutoimmune diseasesPersistent infectionCD40 SignalingDisease progressionMutation frequencyReduced proliferationLupusLight zoneFOS+ B cells: Key mediators of immunotherapy resistance in diverse cancer types
Zhang X, Ma J, Chen Y, Deng X, Zhang Y, Han Y, Tan J, Deng G, Ouyang Y, Zhou Y, Cai C, Zeng S, Shen H. FOS+ B cells: Key mediators of immunotherapy resistance in diverse cancer types. Molecular Therapy Oncology 2024, 32: 200895. PMID: 39583007, PMCID: PMC11584611, DOI: 10.1016/j.omton.2024.200895.Peer-Reviewed Original ResearchImmunotherapy resistanceB cellsPoor response to immunotherapyExpression of Blimp-1Cancer typesResponse to immunotherapyDifferentiation of B cellsB cell subpopulationsAssociated with poor response to immunotherapyPredicting treatment responseAffecting treatment efficacyDiverse cancer typesImmunotherapy efficacyImmunotherapy patientsTumor microenvironmentTreatment responsePlasma cellsImmunotherapyImmunosuppressive effectsBlimp-1Spatial transcriptomic analysisTreatment efficacyOvercome resistanceCancer treatmentImmunofluorescence analysisInterleukin‐5 as a pleiotropic cytokine orchestrating airway type 2 inflammation: Effects on and beyond eosinophils
Buchheit K, Shaw D, Chupp G, Lehtimaki L, Heffler E, Finney‐Hayward T, Zangrilli J, Kwiatek J, Siddiqui S, Roufosse F, Thamboo A, West N, Vichiendilokkul A, Hellings P, Peters A, Howarth P. Interleukin‐5 as a pleiotropic cytokine orchestrating airway type 2 inflammation: Effects on and beyond eosinophils. Allergy 2024, 79: 2662-2679. PMID: 39359069, DOI: 10.1111/all.16303.Peer-Reviewed Original ResearchConceptsAnti-IL-5 therapyType 2 inflammationIL-5Airway type 2 inflammationT regulatory cellsInnate lymphoid cellsInterleukin (IL)-5Relevant to disease pathogenesisSurvival of eosinophilsLower airway diseaseEosinophil-associated diseasesEffector cellsEosinophil depletionTargeted therapyClinical benefitLymphoid cellsPlasma cellsAirway diseaseInterleukin-5Epithelial cellsTherapeutic effectMast cellsDisease pathogenesisEosinophilsTissue damage546VP Deep immunoprofiling in inclusion body myositis and trajectory analysis
Roy B, DiStasio M, Hackbarth R, Bahrassa F, Joo D, Pham M, O'Connor K. 546VP Deep immunoprofiling in inclusion body myositis and trajectory analysis. Neuromuscular Disorders 2024, 43: 104441.137. DOI: 10.1016/j.nmd.2024.07.146.Peer-Reviewed Original ResearchCytotoxic T cellsInclusion body myositis patientsInclusion body myositisIdiopathic inflammatory myopathiesT cell repertoireT cellsB cell repertoireHealthy controlsB cellsExpression of cytotoxic markersIBM pathogenesisSpatial transcriptomic analysisAnalysis of peripheral blood mononuclear cellsPeripheral blood mononuclear cellsCD8 T cellsDifferentiation of cytotoxic T cellsT cell differentiation pathwayMemory B cellsBlood mononuclear cellsAbundant plasma cellsAsymmetric muscle weaknessInflammatory myopathiesCytotoxic markersTranscriptome analysis of muscle tissuesPlasma cellsThe pathogenesis of IgA nephropathy and implications for treatment
Cheung C, Alexander S, Reich H, Selvaskandan H, Zhang H, Barratt J. The pathogenesis of IgA nephropathy and implications for treatment. Nature Reviews Nephrology 2024, 21: 9-23. PMID: 39232245, PMCID: PMC7616674, DOI: 10.1038/s41581-024-00885-3.Peer-Reviewed Original ResearchIgA nephropathyComplement activationDisease pathogenesisB cell primingMucosal immune systemPathogenesis of IgA nephropathyChronic kidney diseaseTargeting different pathwaysPlasma cellsPrimary glomerulonephritisTreatment optionsIgA antibodiesKidney diseaseImmune complexesTriggering inflammationKidney damageGut mucosaObservational studyKidney failureImmune systemLong-term outlookPathway activationPathogenesisIgANNephropathyA human autoimmune organoid model reveals IL-7 function in coeliac disease
Santos A, van Unen V, Lin Z, Chirieleison S, Ha N, Batish A, Chan J, Cedano J, Zhang E, Mu Q, Guh-Siesel A, Tomaske M, Colburg D, Varma S, Choi S, Christophersen A, Baghdasaryan A, Yost K, Karlsson K, Ha A, Li J, Dai H, Sellers Z, Chang H, Dunn J, Zhang B, Mellins E, Sollid L, Fernandez-Becker N, Davis M, Kuo C. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 2024, 632: 401-410. PMID: 39048815, PMCID: PMC11747932, DOI: 10.1038/s41586-024-07716-2.Peer-Reviewed Original ResearchMeSH KeywordsAutoantibodiesAutoimmunityB-LymphocytesBiopsyCeliac DiseaseDuodenumEpitopesGlutensGTP-Binding ProteinsHLA-DQ AntigensHumansInterleukin-7Intestinal MucosaKiller Cells, NaturalModels, BiologicalMyeloid CellsOrganoidsProtein Glutamine gamma Glutamyltransferase 2Receptors, Antigen, B-CellReceptors, Antigen, T-CellT-LymphocytesConceptsInterleukin-7Major histocompatibility complexT cellsEpithelial destructionNatural killer (NK) cellsCoeliac diseaseTissue-resident immune cellsB cell receptor repertoiresOrganoid modelsModels of autoimmunityAir-liquid interfaceGluten-free dietActive CeDRemission diseaseIn vitro modelImmune microenvironmentEndoscopic biopsyMyeloid subsetsAutoantibody productionMyeloid cellsPatient biopsiesHLA-DQ8Immune cellsAnti-transglutaminasePlasma cellsMaturation of germinal center B cells after influenza virus vaccination in humans
McIntire K, Meng H, Lin T, Kim W, Moore N, Han J, McMahon M, Wang M, Malladi S, Mohammed B, Zhou J, Schmitz A, Hoehn K, Carreño J, Yellin T, Suessen T, Middleton W, Teefey S, Presti R, Krammer F, Turner J, Ward A, Wilson I, Kleinstein S, Ellebedy A. Maturation of germinal center B cells after influenza virus vaccination in humans. Journal Of Experimental Medicine 2024, 221: e20240668. PMID: 38935072, PMCID: PMC11211068, DOI: 10.1084/jem.20240668.Peer-Reviewed Original ResearchConceptsB cellsInfluenza vaccineGerminal centersAntigen-specific GC B cellsResponse to seasonal influenza vaccinationLong-lived bone marrow plasma cellsResponse to influenza vaccinationBone marrow plasma cellsGerminal center B cellsGC B cell clonesInfluenza virus vaccineMaturation of B cellsMarrow plasma cellsSeasonal influenza vaccineMemory B cellsHemagglutinin (HAB cell clonesGC B cellsInfluenza hemagglutinin (HAH5 HANeedle aspirationLymphoid structuresLymph nodesPlasma cellsGC reactionCytofluorometric assessment of calreticulin exposure on CD38+ plasma cells from the human bone marrow
Beltrán-Visiedo M, Serrano-Del Valle A, Jiménez-Aldúan N, Soler-Agesta R, Naval J, Galluzzi L, Marzo I. Cytofluorometric assessment of calreticulin exposure on CD38+ plasma cells from the human bone marrow. Methods In Cell Biology 2024, 189: 189-206. PMID: 39393883, DOI: 10.1016/bs.mcb.2024.05.009.Peer-Reviewed Original ResearchCD38+ plasma cellsMultiple myelomaDendritic cellsBone marrowPlasma cellsProfessional antigen-presenting cellsBone marrow of patientsAssociated with improved disease outcomeMarrow of patientsAntigen-presenting cellsSurface of malignant cellsSurface of cancer cellsDying CellsAdaptive immune responsesChaperone calreticulinHuman bone marrowCalreticulin exposureEffector phaseMalignant cellsTolerogenic macrophagesExposure of phosphatidylserineImmunological memoryImmune responseClinical relevanceCancer cellsFrom criteria to clinic: How updated SLiM CRAB criteria influence multiple myeloma diagnostic activity.
Ji M, Wang M, Shih Y, Huber J, Fiala M, Wang R, Sanfilippo K, Thomas T, Wang S, Schoen M, Chang S. From criteria to clinic: How updated SLiM CRAB criteria influence multiple myeloma diagnostic activity. Journal Of Clinical Oncology 2024, 42: 7556-7556. DOI: 10.1200/jco.2024.42.16_suppl.7556.Peer-Reviewed Original ResearchInternational Myeloma Working GroupMagnetic resonance imagingFree light chainsMGUS patientsMM casesActive MMDiagnostic criteriaMultiple myelomaPlasma cellsClonal bone marrow plasma cellsComputed tomographyOld criteriaPositron emission tomography-CTBone marrow plasma cellsSerum free light chainsSLiM-CRAB criteriaProgression to MMClonal plasma cellsMarrow plasma cellsMM patient outcomePlasma cell malignancyAggressive diagnostic strategyInternational Classification of Diseases (ICD)-9/10 codesCRAB symptomsPositive detection rateUnveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR-T therapies in autoimmunity
Bodansky A, Yu D, Rallistan A, Kalaycioglu M, Boonyaratanakornkit J, Green D, Gauthier J, Turtle C, Zorn K, O'Donovan B, Mandel-Brehm C, Asaki J, Kortbawi H, Kung A, Rackaityte E, Wang C, Saxena A, de Dios K, Masi G, Nowak R, O'Connor K, Li H, Diaz V, Saloner R, Casaletto K, Gontrum E, Chan B, Kramer J, Wilson M, Utz P, Hill J, Jackson S, Anderson M, DeRisi J. Unveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR-T therapies in autoimmunity. Journal Of Clinical Investigation 2024, 134: e180012. PMID: 38753445, PMCID: PMC11213466, DOI: 10.1172/jci180012.Peer-Reviewed Original ResearchB-cell maturation antigenImmunomodulatory therapyPlasma cell-targeted therapyCAR-T therapyCell-targeted therapyAutoantibody mediated diseasesCAR-TAnti-CD19Maturation antigenAutoantibody profileAutoreactive antibodiesTargeted therapyPlasma cellsAutoimmune diseasesAutoantibody repertoireTherapyMediated diseasesAutoantibodiesTherapeutic interventionsProteome-wideDisease statesDiseaseImmunological fingerprintPhIP-SeqMinimal effectCrosstalk between CD8+ T cells and mesenchymal stromal cells in intestine homeostasis and immunity
Chen Y, Sun H, Luo Z, Mei Y, Xu Z, Tan J, Xie Y, Li M, Xia J, Yang B, Su B. Crosstalk between CD8+ T cells and mesenchymal stromal cells in intestine homeostasis and immunity. Advances In Immunology 2024, 162: 23-58. PMID: 38866438, DOI: 10.1016/bs.ai.2024.02.001.Peer-Reviewed Original ResearchCD8+ T cellsMesenchymal stromal cell populationT cellsStromal cell populationsMHC II moleculesMesenchymal stromal cellsStromal cellsFunction of CD8+ T cellsCD103+ dendritic cellsMHC-IIIntestinal homeostasisCell populationsPotential pathophysiological impactGut-associated lymphoid tissueIgA+ plasma cellsDiseases of inflammationDead cell debrisTissue residencyDendritic cellsFood antigensIL-33Plasma cellsIntestinal toleranceLymphoid tissueImmunostimulatory agents
2023
Metabolic fitness of IgA+ plasma cells in the gut requires DOCK8
Zhang B, Chen S, Yin X, McBride C, Gertie J, Yurieva M, Bielecka A, Hoffmann B, Hinson J, Grassmann J, Xu L, Siniscalco E, Soldatenko A, Hoyt L, Joseph J, Norton E, Uthaman G, Palm N, Liu E, Eisenbarth S, Williams A. Metabolic fitness of IgA+ plasma cells in the gut requires DOCK8. Mucosal Immunology 2023, 17: 431-449. PMID: 38159726, PMCID: PMC11571232, DOI: 10.1016/j.mucimm.2023.12.001.Peer-Reviewed Original ResearchPlasma cellsLamina propriaT cell-dependent antigensCytokinesis 8 (DOCK8) mutationsDOCK8-deficient miceMucosal IgA productionRecurrent gastrointestinal infectionGut lamina propriaPoor antibody responseIgA class switchingAntigen-specific IgAEarly B cell activationLong-term survivalB cell activationGut IgAFood antigensAntibody responseIgA productionImmune homeostasisGastrointestinal infectionsPrimary immunodeficiencyT cellsPC compartmentB cellsCell activationImmunotherapy targeting B cells and long-lived plasma cells effectively eliminates pre-existing donor-specific allo-antibodies
Zhang Z, Markmann C, Yu M, Agarwal D, Rostami S, Wang W, Liu C, Zhao H, Ochoa T, Parvathaneni K, Xu X, Li E, Gonzalez V, Khadka R, Hoffmann J, Knox J, Scholler J, Marcellus B, Allman D, Fraietta J, Samelson-Jones B, Milone M, Monos D, Garfall A, Naji A, Bhoj V. Immunotherapy targeting B cells and long-lived plasma cells effectively eliminates pre-existing donor-specific allo-antibodies. Cell Reports Medicine 2023, 4: 101336. PMID: 38118406, PMCID: PMC10772570, DOI: 10.1016/j.xcrm.2023.101336.Peer-Reviewed Original ResearchConceptsChimeric antigen receptorLong-lived plasma cellsB-cell maturation antigenAllo-antibodiesMultiple myelomaB cellsChimeric antigen receptor-T therapyEfficacy of chimeric antigen receptorAllo-transplantationAnti-human leukocyte antigenTarget B cellsMemory B cellsCART-19T therapyMaturation antigenLeukocyte antigenAntigen receptorClinical efficacyMurine modelPlasma cellsClinical evaluationHyperacute rejectionDesensitization approachImmunotherapyTransplantationObexelimab in Systemic Lupus Erythematosus With Exploration of Response Based on Gene Pathway Co‐Expression Patterns: A Double‐Blind, Randomized, Placebo‐Controlled, Phase 2 Trial
Merrill J, Guthridge J, Smith M, June J, Koumpouras F, Machua W, Askanase A, Khosroshahi A, Sheikh S, Rathi G, Burington B, Foster P, Matijevic M, Arora S, Wang X, Gao M, Wax S, James J, Zack D. Obexelimab in Systemic Lupus Erythematosus With Exploration of Response Based on Gene Pathway Co‐Expression Patterns: A Double‐Blind, Randomized, Placebo‐Controlled, Phase 2 Trial. Arthritis & Rheumatology 2023, 75: 2185-2194. PMID: 37459248, DOI: 10.1002/art.42652.Peer-Reviewed Original ResearchConceptsSystemic lupus erythematosusLoss of improvementPrimary endpointLupus erythematosusWeek 32B cellsEfficacy-evaluable populationImproved disease activityPhase 2 trialProportion of patientsTreatment-related toxicityTreatment of patientsPlacebo-ControlledCorticosteroid injectionDisease activityInfusion reactionsTrough concentrationsPatient subsetsPlasma cellsPatientsSecondary analysisMonoclonal antibodiesStatistical significanceEndpointPlaceboOptogenetic Control of Oncogenic Signaling in B-Cell Malignancies
Kume K, Lee J, Cheng Z, Robinson M, Leveille E, Cosgun K, Chan L, Feng Y, Arce D, Khanduja D, Toomre D, Müschen M. Optogenetic Control of Oncogenic Signaling in B-Cell Malignancies. Blood 2023, 142: 4138. DOI: 10.1182/blood-2023-190926.Peer-Reviewed Original ResearchB-cell malignanciesB-cell lymphomaMature B-cell lymphomasB cell deathB cellsB cell developmentGenetic deletionMantle cell lymphomaNF-kB signalingBCR signal inhibitorsB cell precursorsCell of originCell viabilityChronic active BCRB cell survivalB cell receptor signalsHodgkin's diseaseMultiple myelomaNormal B cell developmentPlasma cellsBtk tyrosine kinaseCell lymphomaBurkitt's lymphomaNF-kBSmall molecule inhibitorsMachine Learning Models Predict Molecular Genetic Subtypes of Multiple Myeloma from Whole-Slide Bone Marrow Aspirate Smears
Lewis J, Shebelut C, Attieh M, Horwath M, Khanna A, Al-Rusan O, Ponnatt T, Smith G, Gutman D, Gupta V, Aljudi A, Cooper L, Jaye D. Machine Learning Models Predict Molecular Genetic Subtypes of Multiple Myeloma from Whole-Slide Bone Marrow Aspirate Smears. Blood 2023, 142: 7158. DOI: 10.1182/blood-2023-190686.Peer-Reviewed Original ResearchPlasma cell neoplasmsMolecular genetic subtypesBone marrow aspirate smearsMarrow aspirate smearsCell neoplasmsPlasma cellsAspirate smearsMultiple myelomaGenetic subtypesRisk stratificationBone marrow biopsy samplesCurrent prognostic systemsRisk stratification toolCommon hematologic malignancyPlasma cell morphologyMultiple myeloma casesSpecific morphologic featuresSubset of casesRecurrent genetic abnormalitiesLow-resource settingsBiologic subtypeStratification toolAggressive diseaseScanned whole slide imagesHematologic malignanciesRORα plays an important role in generation and maintenance of memory B cells
Xu Y, Moroney J, Zhou Y, Zan H, Casali P. RORα plays an important role in generation and maintenance of memory B cells. The Journal Of Immunology 2023, 210: 76.02-76.02. DOI: 10.4049/jimmunol.210.supp.76.02.Peer-Reviewed Original ResearchMemory B cellsMaintenance of memory B cellsB cellsNP-CGGAnti-NP antibody responseAnti-NP responsesClass-switched antibodiesAbstract Memory B cellsGerminal center formationActivated B cellsPlasma cell differentiationResponse to immunizationPlasma cellsAntigen-SpecificSecrete large amountsRNA-seq experimentsClass switch DNA recombinationClass switchingSomatic hypermutationMiceTranscriptional targetsCenter formationChromatin landscapeCell differentiationRNA-seq
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply