2021
Characterization of Vixotrigine, a Broad-Spectrum Voltage-Gated Sodium Channel Blocker
Hinckley C, Kuryshev Y, Sers A, Barre A, Buisson B, Naik H, Hajos M. Characterization of Vixotrigine, a Broad-Spectrum Voltage-Gated Sodium Channel Blocker. Molecular Pharmacology 2021, 99: 49-59. PMID: 33298520, DOI: 10.1124/molpharm.120.000079.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCHO CellsCricetinaeCricetulusDose-Response Relationship, DrugFemaleGanglia, SpinalHEK293 CellsHumansMalePhenyl EthersProlineRatsRats, Sprague-DawleyVoltage-Gated Sodium Channel BlockersVoltage-Gated Sodium ChannelsConceptsNav blockersNav subtypesVoltage-gated sodium channel subtypesSodium channelsSteady-state inactivation curveSodium channel blockersSodium channel subtypesUse-dependent mannerState-dependent inhibitionVoltage-gated sodium channelsState-dependent blockNeuropathic painAntiepileptic therapyProlong recoveryChannel blockersSensory neuronsChannel subtypesSodium currentBlockersVixotrigineNeural typeSubtypesHigh potencyRecombinant systemsPain
2020
Effects of mexiletine on hyperexcitability in sporadic amyotrophic lateral sclerosis: Preliminary findings from a small phase II randomized controlled trial
Weiss M, Macklin E, McIlduff C, Vucic S, Wainger B, Kiernan M, Goutman S, Goyal N, Rutkove S, Ladha S, Chen I, Harms M, Brannagan T, Lacomis D, Zivkovic S, Ma M, Wang L, Simmons Z, Rivner M, Shefner J, Cudkowicz M, Atassi N, Group F. Effects of mexiletine on hyperexcitability in sporadic amyotrophic lateral sclerosis: Preliminary findings from a small phase II randomized controlled trial. Muscle & Nerve 2020, 63: 371-383. PMID: 33340120, PMCID: PMC8513796, DOI: 10.1002/mus.27146.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAmyotrophic Lateral SclerosisAxonsCortical ExcitabilityDouble-Blind MethodElectrodiagnosisElectromyographyEvoked Potentials, MotorFemaleHumansMaleMedian NerveMexiletineMiddle AgedNeural ConductionPreliminary DataTranscranial Magnetic StimulationVoltage-Gated Sodium Channel BlockersConceptsEffects of mexiletineResting motor thresholdSporadic amyotrophic lateral sclerosisRandomized Controlled TrialsAxonal hyperexcitabilityAmyotrophic lateral sclerosisRandomized to placeboAxonal excitability studiesCompared to placeboPhase II randomized controlled trialSecondary outcome measuresTranscranial magnetic stimulationPrimary endpointLateral sclerosisAxonal excitabilityHalf-timeTreated subjectsMexiletineReduction of motorControlled TrialsHyperexcitabilityALS subjectsAlternative causesMagnetic stimulationOutcome measures
2019
The critical role of persistent sodium current in hippocampal gamma oscillations
Kang YJ, Clement EM, Sumsky SL, Xiang Y, Park IH, Santaniello S, Greenfield LJ, Garcia-Rill E, Smith BN, Lee SH. The critical role of persistent sodium current in hippocampal gamma oscillations. Neuropharmacology 2019, 162: 107787. PMID: 31550457, PMCID: PMC6952064, DOI: 10.1016/j.neuropharm.2019.107787.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCA1 Region, HippocampalCalcium-Calmodulin-Dependent Protein Kinase Type 2Excitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGABAergic NeuronsGamma RhythmHippocampusInhibitory Postsynaptic PotentialsInterneuronsMiceOptogeneticsParvalbuminsPatch-Clamp TechniquesPhenytoinPyramidal CellsRiluzoleSodiumVoltage-Gated Sodium Channel BlockersConceptsParvalbumin-expressing basket cellsHippocampal gamma oscillationsCortical gamma oscillationsGABAergic interneuronsGamma oscillationsPyramidal cellsNon-inactivating sodium currentExcitatory cellsSodium currentWhole-cell patch-clamp recordingsNetwork oscillationsPatch-clamp recordingsPersistent sodium currentGamma network oscillationsAnticonvulsant efficacyGamma frequency rangeEpilepsy patientsBasket cellsCognitive impairmentAction potentialsSynaptic propertiesSynaptic interactionsOptogenetic stimulationElectrophysiological approachesCA1 network
2016
Chapter Fifteen Physiology and Pathophysiology of Sodium Channel Inactivation
Ghovanloo MR, Aimar K, Ghadiry-Tavi R, Yu A, Ruben PC. Chapter Fifteen Physiology and Pathophysiology of Sodium Channel Inactivation. Current Topics In Membranes 2016, 78: 479-509. PMID: 27586293, DOI: 10.1016/bs.ctm.2016.04.001.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsCentral Nervous SystemHumansNeurotoxinsProtein IsoformsProtein SubunitsVoltage-Gated Sodium Channel BlockersVoltage-Gated Sodium Channels
2014
A Tarantula-Venom Peptide Antagonizes the TRPA1 Nociceptor Ion Channel by Binding to the S1–S4 Gating Domain
Gui J, Liu B, Cao G, Lipchik AM, Perez M, Dekan Z, Mobli M, Daly NL, Alewood PF, Parker LL, King GF, Zhou Y, Jordt SE, Nitabach MN. A Tarantula-Venom Peptide Antagonizes the TRPA1 Nociceptor Ion Channel by Binding to the S1–S4 Gating Domain. Current Biology 2014, 24: 473-483. PMID: 24530065, PMCID: PMC3949122, DOI: 10.1016/j.cub.2014.01.013.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBinding SitesDrug Evaluation, PreclinicalFemaleGene LibraryHumansMolecular Sequence DataNAV1.2 Voltage-Gated Sodium ChannelOocytesPeptidesProtein Structure, TertiarySpider VenomsTransient Receptor Potential ChannelsVoltage-Gated Sodium Channel BlockersXenopus ProteinsConceptsTransient receptor potential ankyrin 1Ion channel modifiersProTxIon channel transient receptor potential ankyrin 1Channel modifiersPeptide toxinsSpecific peptidesIon channelsVoltage-gated sodium channelsContext of painS1-S4Spider venomPotential clinical applicationsTRPA1 antagonistTRPA1 functionAnkyrin 1PeptidesModifiersPeptide antagonistAntagonistSodium channelsPharmacological reagentsReagentsClinical applicationNav1.2
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply