2024
Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy
Witten J, Raji I, Manan R, Beyer E, Bartlett S, Tang Y, Ebadi M, Lei J, Nguyen D, Oladimeji F, Jiang A, MacDonald E, Hu Y, Mughal H, Self A, Collins E, Yan Z, Engelhardt J, Langer R, Anderson D. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nature Biotechnology 2024, 1-10. PMID: 39658727, PMCID: PMC12149338, DOI: 10.1038/s41587-024-02490-y.Peer-Reviewed Original ResearchLipid nanoparticlesMRNA deliveryIonizable lipidsImprove nanoparticle deliveryPulmonary gene therapyDelivery in vitroNucleic acid deliveryNeural networkGene therapyNasal mucosaNanoparticle deliveryMouse lungFerret lungsAcid deliveryMouse muscleMessage-passing neural networkDelivery technologiesIn vivoLipid designLungMiceDeliveryDeep learningMRNALipidModeling Endothelial Cell-Targeted Polymeric Nanoparticle Delivery in Renal Glomeruli
Richfield O, Tolbert-Schwartz E, Saltzman W. Modeling Endothelial Cell-Targeted Polymeric Nanoparticle Delivery in Renal Glomeruli. 2024 DOI: 10.70534/zjdh1719.Peer-Reviewed Original ResearchGlomerular diseaseNanoparticle deliveryGlomerular capillariesGlomerular endotheliumRenal autoregulationDesign of novel therapiesReduced renal massCell-targeting antibodiesChronic kidney diseaseDelivery of nanoparticlesCapillary networkNormothermic machine perfusionFiltration of plasmaRenal massesEffective therapeutic delivery systemsNovel therapiesGlomerular capillary wallGlomerular hemodynamicsRat glomeruliKidney diseaseTherapeutic delivery systemsGlomerular capillary networkShear stressHematocrit changesEndothelium264 Poly(amine-co-ester) nanoparticle delivery of CFTR mRNA shows restoration of CFTR activity in cystic fibrosis airway models
Garrison A, Lee J, Browne J, Akhtar L, Peterec K, Suberi A, Eaton D, Ene M, Zhang X, Whang C, Oez H, Kizilirmak T, Bruscia E, Piotrowski-Daspit A, Saltzman W, Egan M. 264 Poly(amine-co-ester) nanoparticle delivery of CFTR mRNA shows restoration of CFTR activity in cystic fibrosis airway models. Journal Of Cystic Fibrosis 2024, 23: s140-s141. DOI: 10.1016/s1569-1993(24)01104-4.Peer-Reviewed Original Research
2023
1091 Improving the anti-tumor efficacy of immunomodulator MPLA via biodegradable nanoparticle delivery
Chang J, Shin K, Lewis J, Suh H, Bosenberg M, Saltzman W, Girardi M. 1091 Improving the anti-tumor efficacy of immunomodulator MPLA via biodegradable nanoparticle delivery. Journal Of Investigative Dermatology 2023, 143: s187. DOI: 10.1016/j.jid.2023.03.1103.Peer-Reviewed Original ResearchNanoparticle deliveryAnti-tumor efficacy
2022
580 Biodegradable bioadhesive nanoparticle delivery of chemotherapy for the treatment of cutaneous malignancies
Chang J, Suh H, Lewis J, Bosenberg M, Saltzman W, Girardi M. 580 Biodegradable bioadhesive nanoparticle delivery of chemotherapy for the treatment of cutaneous malignancies. Journal Of Investigative Dermatology 2022, 142: s99. DOI: 10.1016/j.jid.2022.05.589.Peer-Reviewed Original Research
2018
In utero nanoparticle delivery for site-specific genome editing
Ricciardi AS, Bahal R, Farrelly JS, Quijano E, Bianchi AH, Luks VL, Putman R, López-Giráldez F, Coşkun S, Song E, Liu Y, Hsieh WC, Ly DH, Stitelman DH, Glazer PM, Saltzman WM. In utero nanoparticle delivery for site-specific genome editing. Nature Communications 2018, 9: 2481. PMID: 29946143, PMCID: PMC6018676, DOI: 10.1038/s41467-018-04894-2.Peer-Reviewed Original ResearchConceptsSite-specific genome editingReversal of splenomegalyPeptide nucleic acidIntra-amniotic administrationBlood hemoglobin levelsMonogenic disordersNanoparticle deliveryPolymeric nanoparticlesPostnatal elevationGestational ageHemoglobin levelsImproved survivalPediatric morbidityDisease improvementHuman β-thalassemiaReticulocyte countNormal organ developmentMouse modelNormal rangeEarly interventionGenome editingOff-target mutationsPostnatal growthGene editingVersatile method1070 Biodegradable bioadhesive nanoparticle delivery of camptothecin for the treatment of PDV squamous cell carcinoma
Lee A, Suh H, Yin E, Lewis J, Saltzman W, Girardi M. 1070 Biodegradable bioadhesive nanoparticle delivery of camptothecin for the treatment of PDV squamous cell carcinoma. Journal Of Investigative Dermatology 2018, 138: s181. DOI: 10.1016/j.jid.2018.03.1083.Peer-Reviewed Original Research
2016
In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery
Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu YC, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, López-Giráldez F, Ricciardi A, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock DT, Mark Saltzman W, Ly DH, Glazer PM. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nature Communications 2016, 7: 13304. PMID: 27782131, PMCID: PMC5095181, DOI: 10.1038/ncomms13304.Peer-Reviewed Original ResearchConceptsNanoparticle deliveryGene correctionReversal of splenomegalyPeptide nucleic acidLow off-target effectsVivo correctionGenome editingOff-target effectsGene editingHaematopoietic stem cellsNucleic acidsDonor DNAStem cellsΓPNAΒ-thalassaemiaNanoparticlesDeliveryEditingSCF treatmentTriplex formationA lupus anti-DNA autoantibody mediates autocatalytic, targeted delivery of nanoparticles to tumors
Chen Z, Patel JM, Noble PW, Garcia C, Hong Z, Hansen JE, Zhou J. A lupus anti-DNA autoantibody mediates autocatalytic, targeted delivery of nanoparticles to tumors. Oncotarget 2016, 7: 59965-59975. PMID: 27494868, PMCID: PMC5312362, DOI: 10.18632/oncotarget.11015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, AntinuclearAntibodies, CatalyticBreast NeoplasmsCell Line, TumorDNADoxorubicinDrug Delivery SystemsFemaleHumansLactic AcidLupus Coagulation InhibitorMammary Neoplasms, AnimalMiceMice, Inbred BALB CNanoparticlesPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerTumor MicroenvironmentConceptsDelivery of nanoparticlesDOX-loaded nanoparticlesTumor-targeting mechanismDrug delivery mechanismsAmount of moleculesNanoparticle deliveryLupus anti-DNA autoantibodiesNanoparticlesProof of conceptRelease of DNASurface modificationBind moleculesAutocatalytic effectDelivery mechanismTumor neovasculatureMoleculesDeliveryDoxorubicinTumor microenviromentMajor limitationEfficiencyLigandsSubsequent treatmentToxic agentsDNAIncreased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging
Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS Nano 2016, 10: 4209-4218. PMID: 26967254, PMCID: PMC5257033, DOI: 10.1021/acsnano.5b07573.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBiological TransportBlood-Brain BarrierBrain NeoplasmsCell Line, TumorDecanoic AcidsDrug Delivery SystemsEthanolaminesFemaleGenetic TherapyHeterograftsHumansMatrix Metalloproteinase 2MiceMice, Inbred C57BLNanoparticlesOptical ImagingPaclitaxelPermeabilityPolymersPurinesPyrazolesScorpion VenomsTranscytosisTumor MicroenvironmentConceptsBlood-brain barrierLow delivery efficiencyTransport of nanoparticlesCancer gene therapyNanoparticle deliveryMore nanoparticlesBrain tumorsNanoparticlesDelivery efficiencyGene therapySystemic deliveryNPsBrain malignanciesBBB modulatorsPharmacological agentsBrain cancerBrain regionsTumorsDeliveryBrainImproved treatmentInadequate amountsPositive feedback loopChemotherapyMalignancyCellular distribution of injected PLGA-nanoparticles in the liver
Park JK, Utsumi T, Seo YE, Deng Y, Satoh A, Saltzman WM, Iwakiri Y. Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomedicine Nanotechnology Biology And Medicine 2016, 12: 1365-1374. PMID: 26961463, PMCID: PMC4889500, DOI: 10.1016/j.nano.2016.01.013.Peer-Reviewed Original ResearchConceptsPLGA nanoparticlesSafety of nanoparticlesUptake of nanoparticlesNanoparticle deliveryLiver sinusoidal endothelial cellsNanoparticle retentionNanoparticlesHepatic stellate cellsSinusoidal endothelial cellsKupffer cellsStellate cellsEndothelial cellsTarget cell typeCell typesClodronate liposomesLiver therapyLiver cellsMajor cellsLiverCell populationsCellular distributionLiposomesCellsHepatocytesNanoparticle delivery of miR-223 to attenuate macrophage fusion
Moore LB, Sawyer AJ, Saucier-Sawyer J, Saltzman WM, Kyriakides TR. Nanoparticle delivery of miR-223 to attenuate macrophage fusion. Biomaterials 2016, 89: 127-135. PMID: 26967647, PMCID: PMC4924476, DOI: 10.1016/j.biomaterials.2016.02.036.Peer-Reviewed Original ResearchConceptsForeign body giant cellsMiR-223 mimicsMiR-223Foreign body responseMacrophage fusionSubsequent cytoskeletal rearrangementMiR microarrayKO miceRole of microRNAsMolecular mediatorsNegative regulatorGiant cellsPrimary macrophagesFusion of macrophagesNovel mediatorPrecise mechanismFusion-competent stateTherapeutic inhibitorsBody responseMacrophagesNanoparticle deliveryImplant modelMediatorsEventual encapsulationPost-transcriptional level
2014
Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles with Biotinylated F‑18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography
Sirianni RW, Zheng MQ, Patel TR, Shafbauer T, Zhou J, Saltzman WM, Carson RE, Huang Y. Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles with Biotinylated F‑18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography. Bioconjugate Chemistry 2014, 25: 2157-2165. PMID: 25322194, PMCID: PMC4275164, DOI: 10.1021/bc500315j.Peer-Reviewed Original ResearchConceptsDetection of avidinFate of nanoparticlesAvidin-biotin interactionProsthetic groupNanoparticle deliveryPolymer nanoparticlesNanoparticlesBiotinylated moleculesNoncovalent linkageConvection-enhanced deliveryAvailable biotinHigh purityAvidinBiotinDeliveryFluorobenzylamineSpecific activityFunction of timeMoleculesDerivativesPositron emission tomographySubstratePurityDirect observationKinetics
2011
Nanoparticle delivery of anti-tuberculosis chemotherapy as a potential mediator against drug-resistant tuberculosis.
Smith JP. Nanoparticle delivery of anti-tuberculosis chemotherapy as a potential mediator against drug-resistant tuberculosis. The Yale Journal Of Biology And Medicine 2011, 84: 361-9. PMID: 22180674, PMCID: PMC3238330.Peer-Reviewed Original ResearchConceptsDrug-resistant tuberculosisCurrent chemotherapyAnti-TB drug candidatesAnti-tuberculosis chemotherapyDuration of treatmentDrug-resistant strainsGlobal health communityPill burdenPatient adherenceTuberculosis chemotherapyChemotherapyDrug resistanceIncomplete treatmentPotential mediatorsHealth communityNanoparticle drug deliveryTuberculosisDrug candidatesDevelopment pipelineNanoparticle deliveryTreatmentDeliveryDrug delivery1358 NANOPARTICLE DELIVERY OF THE HISTONE DEACETYLASE INHIBITOR PXD101 FACILITATES BLADDER CANCER CELL UPTAKE AND CYTOTOXICITY
Kaimakliotis H, Martin D, Hoimes C, Cheng C, Liu J, Kelly K, Tew G, Saltzman W, Weiss R. 1358 NANOPARTICLE DELIVERY OF THE HISTONE DEACETYLASE INHIBITOR PXD101 FACILITATES BLADDER CANCER CELL UPTAKE AND CYTOTOXICITY. Journal Of Urology 2011, 185: e542. DOI: 10.1016/j.juro.2011.02.1180.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply