2025
Conjugated Polymer Nanoparticles and Thin Films of Defect-Free Cyclic P3HT: Effects of Polymer Topology on the Nanostructure
Watanabe T, Maeki M, Tokeshi M, Gao T, Li F, Isono T, Tajima K, Satoh T, Sato S, Yamamoto T. Conjugated Polymer Nanoparticles and Thin Films of Defect-Free Cyclic P3HT: Effects of Polymer Topology on the Nanostructure. Molecules 2025, 30: 2490. PMID: 40572455, PMCID: PMC12196461, DOI: 10.3390/molecules30122490.Peer-Reviewed Original ResearchGrazing incidence X-ray scatteringConjugated polymer nanoparticlesEffect of polymer topologyPolymer topologyCP NPsPolymer nanoparticlesMolecular weight dependenceX-ray scatteringConjugation lengthP3HT filmsPoly(3-hexylthiopheneSolvatochromic propertiesHypsochromic shiftInterchain orderingAbsorption spectraMolecular orientationNanostructure regulationP3HTThin filmsReduced particle sizeWeight dependenceNanoscale materialsMicrofluidic devicesSteady responseParticle sizeTargeting Polymeric Nanoparticles to Specific Cell Populations in the Liver
Harkins L, Vilarinho S, Saltzman W. Targeting Polymeric Nanoparticles to Specific Cell Populations in the Liver. Biochemistry 2025, 64: 1685-1697. PMID: 40127248, DOI: 10.1021/acs.biochem.4c00712.Peer-Reviewed Original ResearchConceptsLiver-resident macrophagesCell-specific targetingCell-specific deliveryAccumulation of nanoparticlesSpecific cell populationsDelivery of drugsConjugation of targeting ligandsTreatment of liver diseasesResident macrophagesKupffer cellsLiver diseaseNP administrationCell populationsConjugated nanoparticlesNP designDiseased liverSpecific deliveryCellular distributionTherapeutic carriersLiverSustained releaseNP characteristicsPolymer nanoparticlesCellsDelivery
2024
Enhancing in vivo cell and tissue targeting by modulation of polymer nanoparticles and macrophage decoys
Piotrowski-Daspit A, Bracaglia L, Eaton D, Richfield O, Binns T, Albert C, Gould J, Mortlock R, Egan M, Pober J, Saltzman W. Enhancing in vivo cell and tissue targeting by modulation of polymer nanoparticles and macrophage decoys. Nature Communications 2024, 15: 4247. PMID: 38762483, PMCID: PMC11102454, DOI: 10.1038/s41467-024-48442-7.Peer-Reviewed Original ResearchConceptsPoly(amine-co-esterPolymer nanoparticlesDelivery of nucleic acid therapeuticsCell-type tropismTissue tropismNucleic acid delivery vehiclesIn vivo deliveryIn vivo efficacyCirculation half-lifeNucleic acid therapeuticsVehicle characteristicsTunable propertiesBiodistribution assessmentPhysiological fatePolymer chemistrySurface propertiesPharmacokinetic modelTissue targetingNanoparticlesDistribution modifiersPolymeric nanoparticlesTropismPolymerDelivery vehiclesHalf-life
2023
Intrathecal delivery of nanoparticle PARP inhibitor to the cerebrospinal fluid for the treatment of metastatic medulloblastoma
Khang M, Lee J, Lee T, Suh H, Lee S, Cavaliere A, Rushing A, Geraldo L, Belitzky E, Rossano S, de Feyter H, Shin K, Huttner A, Roussel M, Thomas J, Carson R, Marquez-Nostra B, Bindra R, Saltzman W. Intrathecal delivery of nanoparticle PARP inhibitor to the cerebrospinal fluid for the treatment of metastatic medulloblastoma. Science Translational Medicine 2023, 15: eadi1617. PMID: 37910601, PMCID: PMC11078331, DOI: 10.1126/scitranslmed.adi1617.Peer-Reviewed Original ResearchConceptsCerebrospinal fluidDelivery of drugsEffective therapyTherapeutic indexPARP inhibitorsBlood-brain barrierSite of tumorRapid systemic clearanceXenograft mouse modelSolvent evaporation processAdministration of substancesLeptomeningeal spreadIntrathecal deliveryLeptomeningeal metastasesBrain penetrationSystemic clearanceTumor regressionPolymer nanoparticlesMetastatic medulloblastomaMouse modelPediatric medulloblastomaDrug accumulationCSF turnoverEncapsulated drugsPET imaging
2015
Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium
McNeer NA, Anandalingam K, Fields RJ, Caputo C, Kopic S, Gupta A, Quijano E, Polikoff L, Kong Y, Bahal R, Geibel JP, Glazer PM, Saltzman WM, Egan ME. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nature Communications 2015, 6: 6952. PMID: 25914116, PMCID: PMC4480796, DOI: 10.1038/ncomms7952.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineChloridesCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDNA-Binding ProteinsGenetic TherapyHigh-Throughput Nucleotide SequencingHumansLactic AcidMice, Inbred C57BLNanoparticlesPeptide Nucleic AcidsPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerPolymersRespiratory MucosaConceptsFacile genome engineeringVivo gene deliveryBiodegradable polymer nanoparticlesTransient gene expressionNanoparticle systemsGene deliveryPolymer nanoparticlesGene correctionGenome engineeringNanoparticlesOff-target effectsPeptide nucleic acidLethal genetic disorderNucleic acidsDonor DNATarget effectsIntranasal deliveryDeliveryCystic fibrosisEngineeringOligonucleotideChloride effluxHuman cellsAirway epitheliumLung tissue
2014
Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles with Biotinylated F‑18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography
Sirianni RW, Zheng MQ, Patel TR, Shafbauer T, Zhou J, Saltzman WM, Carson RE, Huang Y. Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles with Biotinylated F‑18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography. Bioconjugate Chemistry 2014, 25: 2157-2165. PMID: 25322194, PMCID: PMC4275164, DOI: 10.1021/bc500315j.Peer-Reviewed Original ResearchConceptsDetection of avidinFate of nanoparticlesAvidin-biotin interactionProsthetic groupNanoparticle deliveryPolymer nanoparticlesNanoparticlesBiotinylated moleculesNoncovalent linkageConvection-enhanced deliveryAvailable biotinHigh purityAvidinBiotinDeliveryFluorobenzylamineSpecific activityFunction of timeMoleculesDerivativesPositron emission tomographySubstratePurityDirect observationKinetics
2010
Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors
Sawyer AJ, Saucier-Sawyer JK, Booth CJ, Liu J, Patel T, Piepmeier JM, Saltzman WM. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Delivery And Translational Research 2010, 1: 34-42. PMID: 21691426, PMCID: PMC3117592, DOI: 10.1007/s13346-010-0001-3.Peer-Reviewed Original ResearchConvection-enhanced deliveryUnloaded nanoparticlesNanoparticle treatmentPolymer nanoparticlesNanoparticlesRelease nanoparticlesDrug loadingDrug releasePolymer deliveryDirect deliveryIntracranial tumorsSimultaneous controlIntracranial 9L tumorsLong-term survivorsDelivery of chemotherapyDeliveryDiffusional penetrationLocal tissue toxicityMedian survivalChemotherapy agentsTherapeutic benefitGlioblastoma multiformeGliosarcoma cellsTissue toxicityTumors
2007
Polymer Nanoparticles for Immunotherapy from Encapsulated Tumor-Associated Antigens and Whole Tumor Cells
Solbrig CM, Saucier-Sawyer JK, Cody V, Saltzman WM, Hanlon DJ. Polymer Nanoparticles for Immunotherapy from Encapsulated Tumor-Associated Antigens and Whole Tumor Cells. Molecular Pharmaceutics 2007, 4: 47-57. PMID: 17217312, DOI: 10.1021/mp060107e.Peer-Reviewed Original ResearchConceptsPolymer nanoparticlesMixture of proteinsMolecular weight polymersRate of nanoparticlesProtein loadingEfficiency of encapsulationWeight polymersDissolved nanoparticlesNanoparticle formulationDifferent particle loadingsRelease propertiesNanoparticlesPreparation methodEncapsulation efficiencyComplex mixturesMolecular weightSDS-acrylamide gel electrophoresisSolvent extractionProtein assaysAgEncapsulationParticle loadingMixtureSpectrum of proteinsPromising approach
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply