2025
Enhancing nucleic acid delivery by the integration of artificial intelligence into lipid nanoparticle formulation
Amoako K, Mokhammad A, Malik A, Yesudasan S, Wheba A, Olagunju O, Gu S, Yarovinsky T, Faustino E, Nguyen J, Hwa J. Enhancing nucleic acid delivery by the integration of artificial intelligence into lipid nanoparticle formulation. Frontiers In Medical Technology 2025, 7: 1591119. PMID: 40589473, PMCID: PMC12206802, DOI: 10.3389/fmedt.2025.1591119.Peer-Reviewed Original ResearchNucleic acid deliveryLipid nanoparticlesAcid deliveryDesign of lipid nanoparticlesMessenger RNADeliver messenger RNAEnhancing nucleic acid deliveryLipid nanoparticle formulationImmune response modulationHematologic therapyPlatelet-related disordersNucleic acid cargoHematological treatmentNanoparticle formulationGold standardEndosomal trappingTherapeutic potentialPersonalized medicineDelivery efficiencyNanoparticle designPlateletCellular targetsResponse modulationDeliveryTransfection barriersCas12a-knock-in mice for multiplexed genome editing, disease modelling and immune-cell engineering
Tang K, Zhou L, Tian X, Fang S, Vandenbulcke E, Du A, Shen J, Cao H, Zhou J, Chen K, Kim H, Luo Z, Xin S, Lin S, Park D, Yang L, Zhang Y, Suzuki K, Majety M, Ling X, Lam S, Chow R, Ren P, Tao B, Li K, Codina A, Dai X, Shang X, Bai S, Nottoli T, Levchenko A, Booth C, Liu C, Fan R, Dong M, Zhou X, Chen S. Cas12a-knock-in mice for multiplexed genome editing, disease modelling and immune-cell engineering. Nature Biomedical Engineering 2025, 1-19. PMID: 40114032, DOI: 10.1038/s41551-025-01371-2.Peer-Reviewed Original ResearchKnock-In MiceBone marrow-derived dendritic cellsCD8+ T cellsNon-viral delivery vehiclesAdeno-associated virusDisease modelsCD4+Dendritic cellsC57BL/6 backgroundT cellsConstitutive expressionB cellsLipid nanoparticlesEx vivoGenome editingMiceMultiplex genome engineeringROSA26 locusGene interaction networksMultiplex genome editingLiver tissueTargeted genome editingDiseaseDelivery vehiclesCRISPR RNA
2024
Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy
Witten J, Raji I, Manan R, Beyer E, Bartlett S, Tang Y, Ebadi M, Lei J, Nguyen D, Oladimeji F, Jiang A, MacDonald E, Hu Y, Mughal H, Self A, Collins E, Yan Z, Engelhardt J, Langer R, Anderson D. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nature Biotechnology 2024, 1-10. PMID: 39658727, PMCID: PMC12149338, DOI: 10.1038/s41587-024-02490-y.Peer-Reviewed Original ResearchLipid nanoparticlesMRNA deliveryIonizable lipidsImprove nanoparticle deliveryPulmonary gene therapyDelivery in vitroNucleic acid deliveryNeural networkGene therapyNasal mucosaNanoparticle deliveryMouse lungFerret lungsAcid deliveryMouse muscleMessage-passing neural networkDelivery technologiesIn vivoLipid designLungMiceDeliveryDeep learningMRNALipidmRNA Vaccines Against Tick‐borne Diseases
Arora G, Fikrig E. mRNA Vaccines Against Tick‐borne Diseases. 2024, 285-301. DOI: 10.1002/9783527838394.ch10.Peer-Reviewed Original ResearchTick-borne diseasesMRNA vaccinesIxodes scapularis ticksCrimean-Congo hemorrhagic feverEffective memory responsesVector-borne diseasesIncreasing cost of developmentPowassan virusModified mRNA vaccineMRNA-based vaccinesTicksVaccine platformTurnover timeLipid nanoparticlesMemory responsesClinical trialsImmune systemEffective vaccineMultiple antigensPathogensSpreading virusArthropodsVaccineDiseaseHemorrhagic feverSalp14 epitope-based mRNA vaccination induces early recognition of a tick bite
Cui Y, Cibichakravarthy B, Tang X, Alameh M, Dwivedi G, Weissman D, Fikrig E. Salp14 epitope-based mRNA vaccination induces early recognition of a tick bite. Vaccine 2024, 42: 126304. PMID: 39236403, PMCID: PMC11416896, DOI: 10.1016/j.vaccine.2024.126304.Peer-Reviewed Original ResearchTick bite siteGuinea pigsMRNA-LNPMRNA vaccinesBite siteImmunized guinea pigsTiters of IgGIxodes scapularis ticksDevelopment of erythemaLipid nanoparticlesSkin of guinea pigsI. scapularisTicksErythemaHistamine activityPigsTick bitesCarboxyl terminusRepeated exposureExposure of animalsAmino acidsSalivary proteinsVaccineMRNAGuineaNanoparticle Retinoic Acid-Inducible Gene I Agonist for Cancer Immunotherapy
Wang-Bishop L, Wehbe M, Pastora L, Yang J, Kimmel B, Garland K, Becker K, Carson C, Roth E, Gibson-Corley K, Ulkoski D, Krishnamurthy V, Fedorova O, Richmond A, Pyle A, Wilson J. Nanoparticle Retinoic Acid-Inducible Gene I Agonist for Cancer Immunotherapy. ACS Nano 2024, 18: 11631-11643. PMID: 38652829, PMCID: PMC11080455, DOI: 10.1021/acsnano.3c06225.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsTumor microenvironmentLipid nanoparticlesBreast cancerResponse to ICIResponse to immune checkpoint inhibitorsInfiltration of CD8<sup>+</sup>Models of triple-negative breast cancerCD4<sup>+</sup> T cellsInhibition of tumor growthTriple-negative breast cancerRIG-IIonizable lipid nanoparticlesLung metastatic burdenIncrease tumor immunogenicityBreast tumor microenvironmentSignaling in vitroACTLA-4Immunogenic melanomaCheckpoint inhibitorsTumor immunogenicityImmunotherapeutic modalitiesCancer immunotherapyMetastatic burdenAPD-1
2023
Lipid Nanoparticle-Mediated Hit-and-Run Approaches Yield Efficient and Safe In Situ Gene Editing in Human Skin
Bolsoni J, Liu D, Mohabatpour F, Ebner R, Sadhnani G, Tafech B, Leung J, Shanta S, An K, Morin T, Chen Y, Arguello A, Choate K, Jan E, Ross C, Brambilla D, Witzigmann D, Kulkarni J, Cullis P, Hedtrich S. Lipid Nanoparticle-Mediated Hit-and-Run Approaches Yield Efficient and Safe In Situ Gene Editing in Human Skin. ACS Nano 2023, 17: 22046-22059. PMID: 37918441, PMCID: PMC10655174, DOI: 10.1021/acsnano.3c08644.Peer-Reviewed Original ResearchConceptsLipid nanoparticlesLNP compositionGene editing ratesGene editingGene editing toolsIonizable lipidsEfficient deliveryDelivery barriersCas9 RNPMonogenic skin diseasesOff-target effectsNanoparticlesEditing ratesEditing toolsCas9 mRNAGenetic toolsHuman skinEditingHigh 2DSkin tissueExciting advancesEfficientLayerDeliveryEpidermal layer
2021
Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies
Matias J, Kurokawa C, Sajid A, Narasimhan S, Arora G, Diktas H, Lynn GE, DePonte K, Pardi N, Valenzuela JG, Weissman D, Fikrig E. Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies. Vaccine 2021, 39: 7661-7668. PMID: 34862075, PMCID: PMC8671329, DOI: 10.1016/j.vaccine.2021.11.003.Peer-Reviewed Original ResearchConceptsTick bite siteTick immunityAntigen deliveryBite siteGuinea pigsDevelopment of vaccinesIxodes scapularis ticksProtein immunizationAntibody responseTick biteVaccine platformLipid nanoparticlesMRNA lipid nanoparticlesMRNA-LNPModel antigenTick salivaEarly hallmarkImmunityTick-borne diseasesScapularis ticksTick challengeErythemaSalivary componentsFactor XaDelivery strategies
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply