2025
A comparative analysis of lesional skin, sentinel flap, and mucosal biopsies in assessing acute face transplant rejection
Kauke-Navarro M, Huelsboemer L, Klimitz F, Diatta F, Knoedler L, Knoedler S, Crisler W, Brown S, Lian C, Repetto F, Clark R, Murphy G, Ko C, Pomahac B. A comparative analysis of lesional skin, sentinel flap, and mucosal biopsies in assessing acute face transplant rejection. Frontiers In Immunology 2025, 16: 1562024. PMID: 40236712, PMCID: PMC11997448, DOI: 10.3389/fimmu.2025.1562024.Peer-Reviewed Original ResearchConceptsNegative predictive valueSkin biopsiesFacial skin biopsiesMucosal biopsiesTransplant rejectionRejection eventsFlap biopsiesTransplant recipientsRejection gradeBanff classificationRejection activityLesional skinBiopsyMucosal tissuesSkin rejectionGrading systemPredictive valueFacial skinSentinel tissueMucosaRejection casesSentinelTransplantationSkinRejection patterns
2022
Chapter 4 Biology of buccal mucosa in urological reconstruction
Sterling J, Policastro C, Nikolavsky D. Chapter 4 Biology of buccal mucosa in urological reconstruction. 2022, 81-104. DOI: 10.1016/b978-0-323-91199-3.00005-0.Peer-Reviewed Original ResearchBuccal mucosaBM graftsMucosa graftBuccal mucosa graftOral mucosa graftMultitude of injuriesComplex urethral stricturesOral mucosal tissuesSize of graftReconstructive urological surgeryLong stricturesUrethral strictureOral mucosaStandardized treatmentUrological surgeryMucosal tissuesUrological reconstructionGraftMucosal substituteSource of tissueRemarkable regenerative capacityMucosaGold standardHistochemical studiesRegenerative capacity
2020
Prolyl 4-hydroxylase alpha 1 protein expression risk-stratifies early stage colorectal cancer
Tanaka A, Zhou Y, Shia J, Ginty F, Ogawa M, Klimstra D, Hendrickson R, Wang J, Roehrl M. Prolyl 4-hydroxylase alpha 1 protein expression risk-stratifies early stage colorectal cancer. Oncotarget 2020, 11: 813-824. PMID: 32166002, PMCID: PMC7055541, DOI: 10.18632/oncotarget.27491.Peer-Reviewed Original ResearchEarly stage CRCStage colorectal cancerColorectal cancerColorectal cancer tissue microarrayBenign colonic mucosaLate stage colorectal cancerUnivariate survival analysisPrognostic molecular markersIndependent validation cohortColorectal cancer patientsTherapeutic decision-makingEarly stage colorectal cancerProteomic profilingTissue microarrayPrognostic markerValidation cohortImmunohistochemical stainingLethal malignancyColonic mucosaMucosal tissuesGlobal proteomic profilingInvestigated expressionSurvival analysisCancerPrecision diagnostics
2018
High-dimensional immune phenotyping and transcriptional analyses reveal robust recovery of viable human immune and epithelial cells from frozen gastrointestinal tissue
Konnikova L, Boschetti G, Rahman A, Mitsialis V, Lord J, Richmond C, Tomov VT, Gordon W, Jelinsky S, Canavan J, Liss A, Wall S, Field M, Zhou F, Goldsmith JD, Bewtra M, Breault DT, Merad M, Snapper SB. High-dimensional immune phenotyping and transcriptional analyses reveal robust recovery of viable human immune and epithelial cells from frozen gastrointestinal tissue. Mucosal Immunology 2018, 11: 1684-1693. PMID: 30111863, PMCID: PMC6512331, DOI: 10.1038/s41385-018-0047-y.Peer-Reviewed Original ResearchConceptsImmune cellsGastrointestinal tissuesMucosal immune compartmentPeripheral immune cellsMucosal immune cellsEpithelial cellsImmune compartmentImmune phenotypingTreatment responsivenessMucosal tissuesTranslational studiesDisease pathogenesisSimple storage techniquesPreservation of viabilityPathogenesisTissueBiomarker discoveryCellsDisease
2017
Clinical and parasitological factors in parasite persistence after treatment and clinical cure of cutaneous leishmaniasis
Martínez-Valencia AJ, Daza-Rivera CF, Rosales-Chilama M, Cossio A, Rincón E, Desai MM, Saravia NG, Gómez MA. Clinical and parasitological factors in parasite persistence after treatment and clinical cure of cutaneous leishmaniasis. PLOS Neglected Tropical Diseases 2017, 11: e0005713. PMID: 28704369, PMCID: PMC5526576, DOI: 10.1371/journal.pntd.0005713.Peer-Reviewed Original ResearchConceptsCutaneous leishmaniasisParasite persistencePercent of patientsInitiation of treatmentEnd of treatmentViability of LeishmaniaDisease reactivationTonsillar mucosaClinical cureClinical resolutionTreatment initiationProtective immunityMeglumine antimoniatePersistent infectionMucosal tissuesPrevious episodesTherapeutic cureParasitological factorsProtective factorsPatientsParasitological parametersTreatmentLeishmaniasisWeeksHigher proportion
2015
Chapter 25 Mucosal Dendritic Cells Origins, Subsets, and Biology
Lambrecht B, Iwasaki A, Kelsall B. Chapter 25 Mucosal Dendritic Cells Origins, Subsets, and Biology. 2015, 489-541. DOI: 10.1016/b978-0-12-415847-4.00025-2.Peer-Reviewed Original ResearchDC populationsGenitourinary tractDendritic cell populationsDendritic cell originDC biologyCrohn's diseaseAllergic diseasesEnvironmental antigensDistinct anatomical locationsInflammatory conditionsUnique immunological functionsImmunological functionsSurface phenotypeImmune functionMucosal tissuesAnatomical locationCell originMaturation pathwayBarrier functionMajor portalCellular originDiseaseCell populationsFunctional equivalentAntigen
2010
Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue
Iijima N, Mattei LM, Iwasaki A. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 108: 284-289. PMID: 21173243, PMCID: PMC3017177, DOI: 10.1073/pnas.1005201108.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsAntigen-Presenting CellsCell DifferentiationCytokinesEnzyme-Linked Immunospot AssayFemaleFluorescein-5-isothiocyanateHerpes GenitalisHerpesvirus 2, HumanInterferon-gammaMiceMice, Inbred C57BLMice, KnockoutMonocytesReceptor, Interferon alpha-betaReceptors, CCR2Th1 CellsConceptsMonocyte-derived APCTh1 immunityInflammatory monocytesTh1 cellsCD4 T cell primingHerpes simplex virus 2Effector Th1 cellsMemory Th1 cellsPrimary mucosal infectionSecondary viral challengeT cell primingIFN-γ secretionSimplex virus 2Signs of infectionImportance of monocytesAPC subsetsCell primingDendritic cellsMucosal infectionsViral challengePeripheral tissuesMucosal tissuesAntiviral protectionMonocytesInfection
2009
Secondary Lymphoid Organs: Responding to Genetic and Environmental Cues in Ontogeny and the Immune Response
Ruddle NH, Akirav EM. Secondary Lymphoid Organs: Responding to Genetic and Environmental Cues in Ontogeny and the Immune Response. The Journal Of Immunology 2009, 183: 2205-2212. PMID: 19661265, PMCID: PMC2766168, DOI: 10.4049/jimmunol.0804324.Peer-Reviewed Original ResearchConceptsSecondary lymphoid organsLymphoid tissueLymphoid organsImmune responseLymphoid tissue organizer cellsBronchus-associated lymphoid tissueLymphoid tissue inducerTertiary lymphoid tissueSLO developmentLymphoid chemokinesIL-17Lymph nodesLymphoid folliclesPeyer's patchesIL-7Crucial cytokineMucosal tissuesOrganizer cellsCellular accumulationCytokinesTissueOrgansEnvironmental cuesCryptopatchesAdenoidsDetection of Leishmania in Unaffected Mucosal Tissues of Patients with Cutaneous Leishmaniasis Caused by Leishmania (Viannia) Species
Figueroa RA, Lozano LE, Romero IC, Cardona MT, Prager M, Pacheco R, Diaz YR, Tellez JA, Saravia NG. Detection of Leishmania in Unaffected Mucosal Tissues of Patients with Cutaneous Leishmaniasis Caused by Leishmania (Viannia) Species. The Journal Of Infectious Diseases 2009, 200: 638-646. PMID: 19569974, PMCID: PMC5056532, DOI: 10.1086/600109.Peer-Reviewed Original ResearchConceptsKinetoplast minicircle DNAMucosal tissuesCutaneous leishmaniasisMucocutaneous leishmaniasisNasal mucosaSwab samplesMucosa of patientsLeishmania speciesPresence of LeishmaniaDetection of LeishmaniaMucosal leishmaniasisMucosal diseaseCutaneous diseaseLeishmania infectionPolymerase chain reactionParasitological evaluationPatientsLeishmania panamensisLeishmania guyanensisMucosaNatural historyLeishmaniasisLeishmania braziliensisChain reactionAsymptomatic presenceDifferential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection
Lee HK, Zamora M, Linehan MM, Iijima N, Gonzalez D, Haberman A, Iwasaki A. Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection. Journal Of Experimental Medicine 2009, 206: 359-370. PMID: 19153243, PMCID: PMC2646574, DOI: 10.1084/jem.20080601.Peer-Reviewed Original ResearchConceptsResident dendritic cellsCD8 T cellsDendritic cellsHSV-1 infectionT cellsEpicutaneous infectionAntigen presentationLymph node-resident dendritic cellsHSV-specific T cellsCD4 T cell responsesNeedle injectionHerpes simplex virus 1 (HSV-1) infectionSimplex virus 1 infectionT cell primingT cell responsesVirus-1 infectionMode of infectionDC populationsCell primingVaginal infectionsImmune responseMucosal tissuesMucosal surfacesHSV-1Cell responses
2008
T helper dependent CTL migration into the vaginal mucosa
Nakanishi Y, Lu B, Gerard C, Iwasaki A. T helper dependent CTL migration into the vaginal mucosa. The FASEB Journal 2008, 22: 852.5-852.5. DOI: 10.1096/fasebj.22.1_supplement.852.5.Peer-Reviewed Original ResearchCD4 helpCTL migrationVaginal mucosaIFN-inducible chemokinesIFN-γ productionSecretion of IFNChemokine receptor CXCR3Site of infectionAntiviral host defenseMucosal sitesChemokine secretionReceptor CXCR3T helpT lymphocytesVirus infectionVaginal epitheliumHelpless miceMouse modelMucosal tissuesHost defenseVirus 2InfectionInfection siteMucosaSecretion
2004
Renal and intestinal transport defects in Slc26a6-null mice
Wang Z, Wang T, Petrovic S, Tuo B, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS, Soleimani M. Renal and intestinal transport defects in Slc26a6-null mice. American Journal Of Physiology - Cell Physiology 2004, 288: c957-c965. PMID: 15574486, DOI: 10.1152/ajpcell.00505.2004.Peer-Reviewed Original ResearchConceptsWild-type miceProximal tubulesSlc26a6-null miceHCO3- secretionKidney proximal tubulesApical membrane ClNull miceBaseline rateNormal blood pressureCl-/formate exchangeBlood pressureKidney functionElectrolyte profileMucosal tissuesIntestinal physiologyUssing chambersSmall intestineMiceFluid absorptionNaCl absorptionStatistical significanceCl-/HCO3NaCl transportDuodenumTubules
2001
Unique Functions of CD11b+, CD8α+, and Double-Negative Peyer’s Patch Dendritic Cells
Iwasaki A, Kelsall B. Unique Functions of CD11b+, CD8α+, and Double-Negative Peyer’s Patch Dendritic Cells. The Journal Of Immunology 2001, 166: 4884-4890. PMID: 11290765, DOI: 10.4049/jimmunol.166.8.4884.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDB7-1 AntigenB7-2 AntigenCD8 AntigensCell LineageCell SeparationDendritic CellsEpithelial CellsEpitopes, T-LymphocyteFemaleHistocompatibility Antigens Class IIImmunophenotypingInterferon-gammaInterleukin-10Interleukin-12Interleukin-4Lectins, C-TypeLymphocyte ActivationLymphocyte SubsetsMacrophage-1 AntigenMembrane GlycoproteinsMiceMice, Inbred BALB CMice, Inbred C57BLMice, TransgenicMinor Histocompatibility AntigensMyeloid CellsPeyer's PatchesReceptors, Cell SurfaceSpleenT-LymphocytesUp-RegulationConceptsMyeloid dendritic cellsDendritic cellsCD40 ligand trimerDC subsetsIL-12p70IL-10T cellsPeyer's patch dendritic cellsIFN-gamma productionSoluble CD40 ligand trimerMucosal lymphoid tissuesNaive T cellsFollicle-associated epitheliumMurine Peyer's patchesNonmucosal sitesDC subpopulationsSubepithelial domeIL-4Lymphoid tissuePeyer's patchesMicrobial stimuliInterfollicular regionsIFN-gammaSurface phenotypeMucosal tissues
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply