2023
Combinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance.
Krykbaeva I, Bridges K, Damsky W, Pizzurro G, Alexander A, McGeary M, Park K, Muthusamy V, Eyles J, Luheshi N, Turner N, Weiss S, Olino K, Kaech S, Kluger H, Miller-Jensen K, Bosenberg M. Combinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance. Cancer Immunology Research 2023, 11: 1332-1350. PMID: 37478171, DOI: 10.1158/2326-6066.cir-22-0699.Peer-Reviewed Original ResearchConceptsPD-1 resistanceDendritic cellsTumor regressionAnti-PD-1 resistanceActivates Dendritic CellsCytokine secretion profilingSystemic cytokine profileTriple therapy combinationInnate immune activationAdaptive immune responsesComplete tumor regressionMajority of miceSignificant clinical challengeMouse melanoma modelT cell activationAgonistic CD40Checkpoint inhibitorsDC subsetsTriple therapyCytokine profileImmune activationCombinatorial immunotherapyTherapy combinationsT cellsClinical challenge
2021
Dendritic Cell Regulation of T Helper Cells
Yin X, Chen S, Eisenbarth SC. Dendritic Cell Regulation of T Helper Cells. Annual Review Of Immunology 2021, 39: 1-32. PMID: 33710920, DOI: 10.1146/annurev-immunol-101819-025146.Peer-Reviewed Original ResearchConceptsDendritic cellsProfessional antigen-presenting cellsDendritic Cell RegulationDifferent DC subsetsT helper cellsAntigen-presenting cellsAdaptive immune responsesT lymphocyte differentiationTh cell differentiationDC subsetsRegulatory cellsDistinct CD4Follicular helperImmune toleranceSubset phenotypesImmune activationHelper cellsImmune cellsImmune responseImmune systemHeterogeneous subsetLymphocyte differentiationLocal tissue microenvironmentTissue microenvironmentCells
2019
Antigen presentation by CD301b+ dermal dendritic cells dictates CD4+ T cell fate
Tatsumi N, Iwasaki A, Kumamoto Y. Antigen presentation by CD301b+ dermal dendritic cells dictates CD4+ T cell fate. The Journal Of Immunology 2019, 202: 56.9-56.9. DOI: 10.4049/jimmunol.202.supp.56.9.Peer-Reviewed Original ResearchCD4 T cellsOT-II cellsAntigen-specific CD4 T cellsDermal dendritic cellsDendritic cellsMHC class IIT cellsTh2 differentiationAntigen presentationCognate interactionPolyclonal CD4T cellsT cells 7 daysEffector CD4 T cellsT helper type 2 cellsMajor DC subsetsIL-4 productionEpidermal Langerhans cellsCells 7 daysType 2 cellsDC subsetsT cell fateLymph nodesOverall cell cycle progressionLangerhans cellsTh2 cells
2016
Bridging channel dendritic cells induce immunity to transfused red blood cells
Calabro S, Gallman A, Gowthaman U, Liu D, Chen P, Liu J, Krishnaswamy JK, Nascimento MS, Xu L, Patel SR, Williams A, Tormey CA, Hod EA, Spitalnik SL, Zimring JC, Hendrickson JE, Stowell SR, Eisenbarth SC. Bridging channel dendritic cells induce immunity to transfused red blood cells. Journal Of Experimental Medicine 2016, 213: 887-896. PMID: 27185856, PMCID: PMC4886363, DOI: 10.1084/jem.20151720.Peer-Reviewed Original ResearchConceptsSplenic dendritic cellsDendritic cellsRBC transfusionT cellsImmune responseRed blood cell transfusionBlood cell transfusionT cell primingConventional dendritic cellsDetrimental immune responsesB cell responsesNaive T cellsT cell helpMurine transfusion modelRBC transfusion supportTime of transfusionRBC alloantigensCell transfusionDC subsetsAllogeneic RBCsRed blood cellsRenal failureTransfusion supportMajor complicationsCell priming
2010
CD8+ T Cell Responses following Replication-Defective Adenovirus Serotype 5 Immunization Are Dependent on CD11c+ Dendritic Cells but Show Redundancy in Their Requirement of TLR and Nucleotide-Binding Oligomerization Domain-Like Receptor Signaling
Lindsay RW, Darrah PA, Quinn KM, Wille-Reece U, Mattei LM, Iwasaki A, Kasturi SP, Pulendran B, Gall JG, Spies AG, Seder RA. CD8+ T Cell Responses following Replication-Defective Adenovirus Serotype 5 Immunization Are Dependent on CD11c+ Dendritic Cells but Show Redundancy in Their Requirement of TLR and Nucleotide-Binding Oligomerization Domain-Like Receptor Signaling. The Journal Of Immunology 2010, 185: 1513-1521. PMID: 20610651, DOI: 10.4049/jimmunol.1000338.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviruses, HumanAnimalsAntigen PresentationCD11c AntigenCD8-Positive T-LymphocytesDefective VirusesDendritic CellsImmunity, InnateImmunophenotypingInterferon Type IInterleukin-12Intracellular Signaling Peptides and ProteinsLymph NodesMiceMice, Inbred C57BLMice, KnockoutOligodeoxyribonucleotidesSignal TransductionToll-Like ReceptorsViral VaccinesVirionConceptsT cell responsesCD8 T cell responsesDendritic cellsCell responsesRAd5 immunizationCD8 responsesDC subsetsInnate cytokinesOligomerization domain-like receptor protein 3Domain-like receptor protein 3OT-I CD8 T cellsCD4 T cell responsesCD8 T cell proliferationNucleotide-Binding Oligomerization DomainReplication-defective adenovirus serotype 5Plasmacytoid dendritic cellsReceptor protein 3CD8 T cellsDistinct DC subsetsT cell immunityApoptosis-associated speck-like proteinPre-existing immunityT cell proliferationLike receptor signalingType I IFN
2006
Host-Derived Langerhans Cells Persist after MHC-Matched Allografting Independent of Donor T Cells and Critically Influence the Alloresponses Mediated by Donor Lymphocyte Infusions
Durakovic N, Bezak K, Skarica M, Radojcic V, Fuchs E, Murphy G, Luznik L. Host-Derived Langerhans Cells Persist after MHC-Matched Allografting Independent of Donor T Cells and Critically Influence the Alloresponses Mediated by Donor Lymphocyte Infusions. The Journal Of Immunology 2006, 177: 4414-4425. PMID: 16982876, DOI: 10.4049/jimmunol.177.7.4414.Peer-Reviewed Original ResearchConceptsCutaneous lymph nodesDonor lymphocyte infusionDonor T cellsBone marrow transplantationLangerhans cellsLymphocyte infusionMarrow transplantationCell reconstitutionT cellsDendritic cell reconstitutionDonor-derived DCsHost Langerhans cellsSplenic DC subsetsTLR7 ligand imiquimodMinor histocompatibility AgT-cell reconstitutionDLI administrationHost alloresponsesHost DCsLC emigrationDC subsetsLymph nodesCostimulatory moleculesHistocompatibility AgCells persist
2004
Involvement of Dendritic Cell Subsets in the Induction of Oral Tolerance and Immunity
FLEETON M, CONTRACTOR N, LEON F, HE J, WETZEL D, DERMODY T, IWASAKI A, KELSALL B. Involvement of Dendritic Cell Subsets in the Induction of Oral Tolerance and Immunity. Annals Of The New York Academy Of Sciences 2004, 1029: 60-65. PMID: 15681744, DOI: 10.1196/annals.1309.008.Peer-Reviewed Original ResearchConceptsSubepithelial dome regionDendritic cellsApoptotic epithelial cellsDC maturationEpithelial cellsOral administrationT cellsImmune responsePP follicle-associated epitheliumSystemic antiviral immune responsesDendritic cell subsetsPlasmacytoid dendritic cellsCross-present antigensRegulatory T cellsInduction of immunityB cell responsesAntiviral immune responseActive viral infectionFollicle-associated epitheliumMurine Peyer's patchesDC infectionDC subsetsOral antigenDC populationsOral tolerance
2003
CD11b+ Peyer’s Patch Dendritic Cells Secrete IL-6 and Induce IgA Secretion from Naive B Cells
Sato A, Hashiguchi M, Toda E, Iwasaki A, Hachimura S, Kaminogawa S. CD11b+ Peyer’s Patch Dendritic Cells Secrete IL-6 and Induce IgA Secretion from Naive B Cells. The Journal Of Immunology 2003, 171: 3684-3690. PMID: 14500666, DOI: 10.4049/jimmunol.171.7.3684.Peer-Reviewed Original ResearchConceptsPP dendritic cellsNaive B cellsDendritic cellsIL-6B cellsIgA secretionDC subsetsIgA productionPeyer's patch dendritic cellsSecrete IL-6Exogenous IL-6Cell coculture systemDC populationsLymphoid organsCytokine secretionAb productionT cellsHigh levelsSpleenSecretionCoculture systemCellsIgAUnique roleDistinct capacities
2002
Flt3 ligand therapy for recipients of allogeneic bone marrow transplants expands host CD8α+ dendritic cells and reduces experimental acute graft-versus-host disease
Teshima T, Reddy P, Lowler K, KuKuruga M, Liu C, Cooke K, Ferrara J. Flt3 ligand therapy for recipients of allogeneic bone marrow transplants expands host CD8α+ dendritic cells and reduces experimental acute graft-versus-host disease. Blood 2002, 99: 1825-1832. PMID: 11861301, DOI: 10.1182/blood.v99.5.1825.Peer-Reviewed Original ResearchMeSH KeywordsAcute DiseaseAdjuvants, ImmunologicAnimalsBone Marrow TransplantationCD8 AntigensCell DivisionCoculture TechniquesDendritic CellsDisease Models, AnimalFemaleGraft vs Host DiseaseLymphocyte ActivationMembrane ProteinsMiceMice, Inbred C57BLSurvival RateT-LymphocytesTransplantation, HomologousConceptsDendritic cellsT cell responsesAcute graftHost diseaseDonor T-cell responsesAllogeneic bone marrow transplantationAllogeneic T-cell responsesAllogeneic bone marrow transplantExperimental acute graftHost dendritic cellsPoor stimulatory capacityNormal dendritic cellsAllogeneic T cellsBone marrow transplantationTreatment of miceBone marrow transplantFL treatmentAcute GVHDGVHD mortalityDC subsetsAllogeneic lymphocytesDC numbersMarrow transplantationLigand therapyMarrow transplant
2001
Unique Functions of CD11b+, CD8α+, and Double-Negative Peyer’s Patch Dendritic Cells
Iwasaki A, Kelsall B. Unique Functions of CD11b+, CD8α+, and Double-Negative Peyer’s Patch Dendritic Cells. The Journal Of Immunology 2001, 166: 4884-4890. PMID: 11290765, DOI: 10.4049/jimmunol.166.8.4884.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDB7-1 AntigenB7-2 AntigenCD8 AntigensCell LineageCell SeparationDendritic CellsEpithelial CellsEpitopes, T-LymphocyteFemaleHistocompatibility Antigens Class IIImmunophenotypingInterferon-gammaInterleukin-10Interleukin-12Interleukin-4Lectins, C-TypeLymphocyte ActivationLymphocyte SubsetsMacrophage-1 AntigenMembrane GlycoproteinsMiceMice, Inbred BALB CMice, Inbred C57BLMice, TransgenicMinor Histocompatibility AntigensMyeloid CellsPeyer's PatchesReceptors, Cell SurfaceSpleenT-LymphocytesUp-RegulationConceptsMyeloid dendritic cellsDendritic cellsCD40 ligand trimerDC subsetsIL-12p70IL-10T cellsPeyer's patch dendritic cellsIFN-gamma productionSoluble CD40 ligand trimerMucosal lymphoid tissuesNaive T cellsFollicle-associated epitheliumMurine Peyer's patchesNonmucosal sitesDC subpopulationsSubepithelial domeIL-4Lymphoid tissuePeyer's patchesMicrobial stimuliInterfollicular regionsIFN-gammaSurface phenotypeMucosal tissues
2000
Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine
Iwasaki A, Kelsall B. Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine. Journal Of Experimental Medicine 2000, 191: 1381-1394. PMID: 10770804, PMCID: PMC2193144, DOI: 10.1084/jem.191.8.1381.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceChemokine CCL19Chemokine CCL20Chemokines, CCChemotaxisDendritic CellsDNA PrimersFemaleGene ExpressionIn Situ HybridizationMacrophage Inflammatory ProteinsMiceMice, Inbred BALB CMicroscopy, ConfocalModels, BiologicalPeyer's PatchesReceptors, CCR6Receptors, CCR7Receptors, ChemokineRNA, MessengerSpleenConceptsDendritic cell subsetsInterfollicular regionsDC subsetsCell subsetsInflammatory proteinPeyer's patchesSecondary lymphoid organ chemokineChemokine macrophage inflammatory proteinSplenic DC subsetsSubepithelial dome regionDistinct dendritic cell subsetsRole of chemokinesT cell responsesMacrophage inflammatory proteinT-cell regionsFollicle-associated epitheliumMurine Peyer's patchesTranscriptase-polymerase chain reaction analysisFunctional CCR7Lymphoid DCsMIP-3βPP DCsMyeloid DCsCCR7 expressionPolymerase chain reaction analysis
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply