2009
Secondary Lymphoid Organs: Responding to Genetic and Environmental Cues in Ontogeny and the Immune Response
Ruddle NH, Akirav EM. Secondary Lymphoid Organs: Responding to Genetic and Environmental Cues in Ontogeny and the Immune Response. The Journal Of Immunology 2009, 183: 2205-2212. PMID: 19661265, PMCID: PMC2766168, DOI: 10.4049/jimmunol.0804324.Peer-Reviewed Original ResearchConceptsSecondary lymphoid organsLymphoid tissueLymphoid organsImmune responseLymphoid tissue organizer cellsBronchus-associated lymphoid tissueLymphoid tissue inducerTertiary lymphoid tissueSLO developmentLymphoid chemokinesIL-17Lymph nodesLymphoid folliclesPeyer's patchesIL-7Crucial cytokineMucosal tissuesOrganizer cellsCellular accumulationCytokinesTissueOrgansEnvironmental cuesCryptopatchesAdenoids
2005
Lymphotoxin Plays a Crucial Role in the Development and Function of Nasal-Associated Lymphoid Tissue through Regulation of Chemokines and Peripheral Node Addressin
Ying X, Chan K, Shenoy P, Hill M, Ruddle NH. Lymphotoxin Plays a Crucial Role in the Development and Function of Nasal-Associated Lymphoid Tissue through Regulation of Chemokines and Peripheral Node Addressin. American Journal Of Pathology 2005, 166: 135-146. PMID: 15632007, PMCID: PMC1602284, DOI: 10.1016/s0002-9440(10)62239-0.Peer-Reviewed Original ResearchConceptsHigh endothelial venulesLymphoid chemokinesIntranasal immunizationNasal-associated lymphoid tissueB cell compartmentalizationB cell zonesCervical lymph nodesSerum IgG titersLower cytokine levelsExpression of lymphotoxinImmediate postnatal periodRole of cytokinesRegulation of chemokinesWild-type miceGlyCAM-1Peripheral node addressinLymphoid tissue developmentNALT developmentSplenic cytokinesVaginal IgACytokine levelsLymph nodesIgG titersVascular addressinsLymphoid tissue
2003
Ectopic LTαβ Directs Lymphoid Organ Neogenesis with Concomitant Expression of Peripheral Node Addressin and a HEV-restricted Sulfotransferase
Drayton DL, Ying X, Lee J, Lesslauer W, Ruddle NH. Ectopic LTαβ Directs Lymphoid Organ Neogenesis with Concomitant Expression of Peripheral Node Addressin and a HEV-restricted Sulfotransferase. Journal Of Experimental Medicine 2003, 197: 1153-1163. PMID: 12732657, PMCID: PMC2193975, DOI: 10.1084/jem.20021761.Peer-Reviewed Original ResearchConceptsHigh endothelial venulesPeripheral node addressinLymphoid organogenesisLT-alphaB cell compartmentalizationMucosal addressin cell adhesion moleculeAlpha betaLymph node functionB-cell areasAntigen presenting cellsLymphoid neogenesisPancreatic infiltratesPNAd expressionLymphoid chemokinesFDC networksMononuclear infiltrateAlpha micePresenting cellsEndothelial venulesCell adhesion moleculeCell accumulationLT-betaAdhesion moleculesNode functionPancreata
2001
Peripheral Blood Fibrocytes: Differentiation Pathway and Migration to Wound Sites
Abe R, Donnelly S, Peng T, Bucala R, Metz C. Peripheral Blood Fibrocytes: Differentiation Pathway and Migration to Wound Sites. The Journal Of Immunology 2001, 166: 7556-7562. PMID: 11390511, DOI: 10.4049/jimmunol.166.12.7556.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood CellsCell DifferentiationCell MovementCells, CulturedCollagenFemaleFibroblastsFibrosisGelsHumansInjections, IntravenousLipopolysaccharide ReceptorsMiceMice, Inbred BALB CReceptors, ChemokineStem Cell TransplantationStem CellsTransforming Growth Factor betaTransforming Growth Factor beta1Wound HealingConceptsCultured fibrocytesTissue injuryChemokine/chemokine receptor interactionsUnique cell surface phenotypeCutaneous tissue injurySecondary lymphoid chemokineAlpha-smooth muscle actinWound healingWound healing myofibroblastsMononuclear cell populationsCCR7 chemokine receptorChemokine receptor interactionsPotent immunostimulatory activitySmooth muscle actinCell surface phenotypeBlood-borne cellsDifferentiation pathwayFibrocyte traffickingLymphoid chemokinesFibrocyte differentiationChemokine receptorsT cellsSurface phenotypePotent stimulusMuscle actin
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply