2022
Glutamate Metabotropic Receptor Type 3 (mGlu3) Localization in the Rat Prelimbic Medial Prefrontal Cortex
Woo E, Datta D, Arnsten AFT. Glutamate Metabotropic Receptor Type 3 (mGlu3) Localization in the Rat Prelimbic Medial Prefrontal Cortex. Frontiers In Neuroanatomy 2022, 16: 849937. PMID: 35444520, PMCID: PMC9013768, DOI: 10.3389/fnana.2022.849937.Peer-Reviewed Original ResearchPrelimbic medial prefrontal cortexRat prelimbic medial prefrontal cortexMedial prefrontal cortexLayer IIIPrefrontal cortexDendritic spinesReceptor type 3Dorsolateral prefrontal cortexPrimate dlPFCReceptor subtypesAxon terminalsNeuronal firingPL-mPFCIntervaricose segmentsMGlu3Glial membranesRhesus monkeysPredominant locationType 3GliaCognitive functioningDLPFCCortexSpineCurrent studyUnusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia
Arnsten AFT, Woo E, Yang S, Wang M, Datta D. Unusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia. Biological Psychiatry 2022, 92: 480-490. PMID: 35305820, PMCID: PMC9372235, DOI: 10.1016/j.biopsych.2022.02.003.Peer-Reviewed Original ResearchConceptsEnvironmental insultsMore superficial layersDorsolateral prefrontal cortexPrimate dlPFCInflammatory mechanismsInflammatory insultKynurenic acidNMDA receptorsReceptor neurotransmissionDendritic spinesLayer IIICAMP/PKAGlutamatergic synapsePrefrontal cortexInsultPotassium channelsNeurotransmissionCalcium signalingSynapsesGenetic insultsSuperficial layersSchizophreniaSpineCortexNeuromodulation
2020
Mapping Phosphodiesterase 4D (PDE4D) in Macaque Dorsolateral Prefrontal Cortex: Postsynaptic Compartmentalization in Layer III Pyramidal Cell Circuits
Datta D, Enwright JF, Arion D, Paspalas CD, Morozov YM, Lewis DA, Arnsten AFT. Mapping Phosphodiesterase 4D (PDE4D) in Macaque Dorsolateral Prefrontal Cortex: Postsynaptic Compartmentalization in Layer III Pyramidal Cell Circuits. Frontiers In Neuroanatomy 2020, 14: 578483. PMID: 33328902, PMCID: PMC7714912, DOI: 10.3389/fnana.2020.578483.Peer-Reviewed Original ResearchDorsolateral prefrontal cortexSmooth endoplasmic reticulumPrefrontal cortexHuman dlPFCPrimate dorsolateral prefrontal cortexHuman post-mortem tissueInternal calcium releasePrimate association corticesPost-mortem tissueMacaque dorsolateral prefrontal cortexPrimate dlPFCAxospinous synapsesPV interneuronsGlutamatergic connectionsGlutamatergic synapsesPyramidal cellsAxon terminalsTransmitter releaseTau phosphorylationDendritic spinesPDE4 isozymesAssociation cortexLayer IIICAMP actionPostsynaptic labelingNeuron-Glia Inflammatory Interactions in Aging Rhesus Macaque Dorsolateral Prefrontal Cortex Layer III
Datta D, Morozov Y, Arnsten A. Neuron-Glia Inflammatory Interactions in Aging Rhesus Macaque Dorsolateral Prefrontal Cortex Layer III. Biological Psychiatry 2020, 87: s425. DOI: 10.1016/j.biopsych.2020.02.1084.Peer-Reviewed Original ResearchInflammatory interactionsLayer IIIClassical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex
Datta D, Leslie SN, Morozov YM, Duque A, Rakic P, van Dyck CH, Nairn AC, Arnsten AFT. Classical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex. Journal Of Neuroinflammation 2020, 17: 8. PMID: 31906973, PMCID: PMC6945481, DOI: 10.1186/s12974-019-1683-1.Peer-Reviewed Original ResearchConceptsRat medial PFCPrimate dlPFCC1q levelsMedial PFCLayer IIIC1q proteinPrecise anatomical distributionMacaque dorsolateral prefrontal cortexAge-related degenerationDorsolateral prefrontal cortexAge-related changesC1q expressionSynapse lossBackgroundCognitive impairmentSpine lossComplement signalingInhibitory synapsesAnatomical distributionSynaptic localizationDisease pathogenesisGlial phagocytosisAlzheimer's diseaseClassical complementPrimate cortexPrefrontal cortex
2017
mGluR2 versus mGluR3 Metabotropic Glutamate Receptors in Primate Dorsolateral Prefrontal Cortex: Postsynaptic mGluR3 Strengthen Working Memory Networks
Jin LE, Wang M, Galvin VC, Lightbourne TC, Conn PJ, Arnsten AF, Paspalas CD. mGluR2 versus mGluR3 Metabotropic Glutamate Receptors in Primate Dorsolateral Prefrontal Cortex: Postsynaptic mGluR3 Strengthen Working Memory Networks. Cerebral Cortex 2017, 28: 974-987. PMID: 28108498, PMCID: PMC5974790, DOI: 10.1093/cercor/bhx005.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsDose-Response Relationship, DrugExcitatory Amino Acid AgentsEye MovementsFemaleImage Processing, Computer-AssistedMacaca mulattaMagnetic Resonance ImagingMaleMemory, Short-TermNeuronsPost-Synaptic DensityPrefrontal CortexRatsReceptors, Metabotropic GlutamateSpatial LearningSubcellular FractionsConceptsPrimate dorsolateral prefrontal cortexMetabotropic glutamate receptorsDorsolateral prefrontal cortexGlutamate receptorsCell firingPrefrontal cortexMGluR2 positive allosteric modulatorsFocus of pathologyNovel therapeutic targetPositive allosteric modulatorsMGluR3 agonistGlutamate transmissionAstrocytic expressionGlial receptorsPostsynaptic componentsSpine synapsesInhibition of cAMPN-acetylaspartylglutamateMGluR3Therapeutic targetCognitive disordersLayer IIIMGluR2Postsynaptic cAMPAlzheimer's disease
2004
Spiral Waves in Disinhibited Mammalian Neocortex
Huang X, Troy W, Yang Q, Ma H, Laing C, Schiff S, Wu J. Spiral Waves in Disinhibited Mammalian Neocortex. Journal Of Neuroscience 2004, 24: 9897-9902. PMID: 15525774, PMCID: PMC4413915, DOI: 10.1523/jneurosci.2705-04.2004.Peer-Reviewed Original Research
2001
Ibotenate Injections into the Pre‐ and Parasubiculum Provide Partial Protection against Kainate‐Induced Epileptic Damage in Layer III of Rat Entorhinal Cortex
Eid T, Du F, Schwarcz R. Ibotenate Injections into the Pre‐ and Parasubiculum Provide Partial Protection against Kainate‐Induced Epileptic Damage in Layer III of Rat Entorhinal Cortex. Epilepsia 2001, 42: 817-824. PMID: 11488878, DOI: 10.1046/j.1528-1157.2001.042007817.x.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyEntorhinal cortexLayer IIIIbotenate injectionLobe epilepsySeizure-induced damageLoss of neuronsLayer III neuronsRat entorhinal cortexEpileptic damagePartial neuroprotectionExcitatory afferentsPrimary lesionSeizure activityEntorhinal neuronsAnimal modelsIbotenate lesionsPartial protectionLesionsNeuronsKainatePresubiculumEpilepsySerial reconstructionCortex
2000
Neurons in Layer III of the Entorhinal Cortex: A Role in Epileptogenesis and Epilepsy?
SCHWARCZ R, EID T, DU F. Neurons in Layer III of the Entorhinal Cortex: A Role in Epileptogenesis and Epilepsy? Annals Of The New York Academy Of Sciences 2000, 911: 328-342. PMID: 10911883, DOI: 10.1111/j.1749-6632.2000.tb06735.x.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyEntorhinal cortexLayer IIILobe epilepsySeizure-induced cell deathProminent excitatory inputSeizure-induced deathLayer III neuronsAminooxyacetic acidAOAA injectionPreferential lesionGABAergic neuronsNeuron lossLimbic structuresExcitatory inputsPathological changesParahippocampal structuresAnimal modelsEpilepsyNeuronsLesionsCell deathCortexDeathInjection
1999
Variation in the spatial relationship between parvalbumin immunoreactive interneurones and pyramidal neurones in rat somatosensory cortex
Elston G, DeFelipe J, Arellano J, del Carmen Gonzilez-Albo M, Rosa M. Variation in the spatial relationship between parvalbumin immunoreactive interneurones and pyramidal neurones in rat somatosensory cortex. Neuroreport 1999, 10: 2975-2979. PMID: 10549808, DOI: 10.1097/00001756-199909290-00019.Peer-Reviewed Original ResearchConceptsPyramidal neuronesLayer VLucifer YellowSomatosensory cortexLayer IIICell bodiesRat primary somatosensory cortexTangential cortical slicesPrimary somatosensory cortexImmunoreactive cell bodiesBasal dendritic fieldsRat somatosensory cortexCombination of antibodiesReceptive field propertiesDendritic territoriesCortical slicesInhibitory modulationDendritic fieldsCortical neuronesIntracellular injectionNeuronesCortexConfocal microscopyFunctional implicationsSlicesUltrastructure and immunocytochemical distribution of GABA in layer III of the rat medial entorhinal cortex following aminooxyacetic acid-induced seizures
Eid T, Schwarcz R, Ottersen OP. Ultrastructure and immunocytochemical distribution of GABA in layer III of the rat medial entorhinal cortex following aminooxyacetic acid-induced seizures. Experimental Brain Research 1999, 125: 463-475. PMID: 10323293, DOI: 10.1007/s002210050704.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyEntorhinal cortexLayer IIIMedial entorhinal cortexAminooxyacetic acidGABA-immunoreactive neuronsTemporal lobe seizuresAcid-induced seizuresGABA-like immunoreactivityDifferent animal modelsHippocampal region CA1AOAA injectionSimilar neuropathologySwollen dendritesBehavioral seizuresGABA neuronsLobe epilepsyNeuronal profilesNeuropathological changesPyramidal neuronsNerve terminalsAxon terminalsRat medialDendritic spinesLight microscopic preparations
1997
Neuronal damage after the injection of amino-oxyacetic acid into the rat entorhinal cortex: a silver impregnation study
Du F, Eid T, Schwarcz R. Neuronal damage after the injection of amino-oxyacetic acid into the rat entorhinal cortex: a silver impregnation study. Neuroscience 1997, 82: 1165-1178. PMID: 9466438, DOI: 10.1016/s0306-4522(97)00354-0.Peer-Reviewed Original ResearchConceptsSilver-stained neuronsTemporal lobe epilepsyEntorhinal cortexAcid injectionNeuronal damageLobe epilepsyLayer IIIProlonged seizure activitySilver impregnation studyReactive glial cellsPattern of neurodegenerationHippocampal CA1 fieldLateral amygdaloid nucleusRat entorhinal cortexAminooxyacetic acidAmino-oxyacetic acidMedial entorhinal cortexDegenerated neuronsNeuropathological consequencesDamaged neuronsSeizure activityAmygdaloid nucleusMost neuronsNeuronal deathCA1 field
1996
Afferents to the seizure-sensitive neurons in layer III of the medial entorhinal area: a tracing study in the rat
Eid T, Jorritsma-Byham B, Schwarcz R, Witter MP. Afferents to the seizure-sensitive neurons in layer III of the medial entorhinal area: a tracing study in the rat. Experimental Brain Research 1996, 109: 209-218. PMID: 8738371, DOI: 10.1007/bf00231782.Peer-Reviewed Original ResearchConceptsMedial entorhinal areaEntorhinal areaLayer IIIThalamic nucleiIontophoretic injectionVentral portionSeptum-diagonal band complexRetrograde tracer Fast BlueAnteroventral thalamic nucleusTemporal lobe epilepsyAnterograde tracing techniquesAnteromedial thalamic nucleusNucleus raphe dorsalisTracer Fast BlueLateral entorhinal areaAmino-oxyacetic acidLimbic seizuresLobe epilepsyNeuronal vulnerabilityVentrolateral hypothalamusSurgical specimensAnterograde tracerLayer IVRaphe dorsalisFast Blue
1995
Differential neuronal vulnerability to amino-oxyacetate and quinolinate in the rat parahippocampal region
Eid T, Du F, Schwarcz R. Differential neuronal vulnerability to amino-oxyacetate and quinolinate in the rat parahippocampal region. Neuroscience 1995, 68: 645-656. PMID: 8577365, DOI: 10.1016/0306-4522(95)00183-j.Peer-Reviewed Original ResearchConceptsAcute behavioral seizuresBehavioral seizuresDizocilpine maleateNeuronal lossEntorhinal cortexEndogenous N-methyl-D-aspartate receptor agonistN-methyl-D-aspartate receptor antagonist dizocilpine maleateLayer IIIN-methyl-D-aspartate receptor agonistParahippocampal regionN-methyl-D-aspartate (NMDA) receptor subtypeDifferential neuronal vulnerabilityDorsal perirhinal cortexPreferential neuronal lossTemporal lobe epilepsyChloral hydrate anesthesiaLower anesthetic doseNeuropathological sequelaeLobe epilepsyNeuropathological changesLayer VNeuronal vulnerabilityPreferential degenerationAnesthetic doseReceptor agonistPreferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy
Du F, Eid T, Lothman E, Kohler C, Schwarcz R. Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. Journal Of Neuroscience 1995, 15: 6301-6313. PMID: 7472396, PMCID: PMC6577998, DOI: 10.1523/jneurosci.15-10-06301.1995.Peer-Reviewed Original ResearchConceptsPreferential neuronal lossTemporal lobe epilepsyNeuronal lossMedial entorhinal cortexEntorhinal cortexLayer IIILobe epilepsyRat modelIntractable temporal lobe epilepsyAcute status epilepticusLithium/pilocarpineParvalbumin-positive neuronsIntracellular calcium ion concentrationKainic acid administrationNerve cell lossAdult male ratsInjection of diazepamSurviving neuronsProlonged seizuresStatus epilepticusAcid administrationNissl stainingVentral hippocampusKainic acidPathological elevation
1991
Prenatal specification of callosal connections in rhesus monkey
Schwartz M, Goldman‐Rakic P. Prenatal specification of callosal connections in rhesus monkey. The Journal Of Comparative Neurology 1991, 307: 144-162. PMID: 1713225, DOI: 10.1002/cne.903070113.Peer-Reviewed Original ResearchConceptsCallosal neuronsLayer IIIPrefrontal cortexInjection siteHeterotopic areasCortical layersCallosal projection neuronsLateral orbital cortexLayer III neuronsPrimate prefrontal cortexPattern of maturationMonkey prefrontal cortexDorsolateral prefrontal cortexLarge injection sitesHomotopic cortexOpposite hemisphereCallosal connectionsAdult casesProjection neuronsRetrograde tracerCallosal axonsOrbital cortexComparable injectionsFrontal cortexAdult monkeys
1989
Quantitative autoradiographic mapping of serotonin 5‐HT1 and 5‐HT2 receptors and uptake sites in the neocortex of the rhesus monkey
Lidow M, Goldman‐Rakic P, Gallager D, Rakic P. Quantitative autoradiographic mapping of serotonin 5‐HT1 and 5‐HT2 receptors and uptake sites in the neocortex of the rhesus monkey. The Journal Of Comparative Neurology 1989, 280: 27-42. PMID: 2918094, DOI: 10.1002/cne.902800104.Peer-Reviewed Original ResearchConceptsLayer IIIReceptor subtypesUptake sitesCortical areasVisual cortexLayer IRhesus monkeysPrimary motor cortexSerotonin uptake sitesQuantitative autoradiographic mappingMonkey cerebral cortexDistribution of serotoninPrimary visual cortexPattern of distributionIVC betaAutoradiographic mappingCerebral cortexMotor cortexLayer IVCortical functionOccipital lobePrimary motorPrestriate cortexReceptor distributionCortexDistribution of major neurotransmitter receptors in the motor and somatosensory cortex of the rhesus monkey
Lidow M, Goldman-Rakic P, Gallager D, Geschwind D, Rakic P. Distribution of major neurotransmitter receptors in the motor and somatosensory cortex of the rhesus monkey. Neuroscience 1989, 32: 609-627. PMID: 2557559, DOI: 10.1016/0306-4522(89)90283-2.Peer-Reviewed Original ResearchConceptsMotor cortexSomatosensory cortexRhesus monkeysNeurotransmitter receptorsMajor neurotransmitter receptorsQuantitative autoradiographic techniqueAdult rhesus monkeysReceptor autoradiographyLaminar distributionReceptor subtypesMotor areaBenzodiazepine receptorsLayer IIIClassical histological techniquesLayer ID2 dopaminergicCortexAutoradiographic techniquesBeta 1Same receptorAlpha 1Alpha 2Different receptorsReceptorsCoextensive distribution
1988
Differential quenching and limits of resolution in autoradiograms of brain tissue labeled with3H-,125I- and14C-compounds
Lidow M, Goldman-Rakic P, Rakic P, Gallager D. Differential quenching and limits of resolution in autoradiograms of brain tissue labeled with3H-,125I- and14C-compounds. Brain Research 1988, 459: 105-119. PMID: 3167570, DOI: 10.1016/0006-8993(88)90290-9.Peer-Reviewed Original ResearchConceptsBrain sectionsAdult monkeysBrain tissuePrimary motor cortexPrimary visual cortexAutoradiograms of sectionsAdult rhesus monkeysMotor cortexCortical sectionsLaminar patternLayer IIIPrimate brainVisual cortexRhesus monkeysBrain structuresNeocortexCortexSignificant attenuationAutoradiographic measurementFilm autoradiographyMonkeysAutoradiograms
1984
Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex
Schwartz M, Goldman‐Rakic P. Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex. The Journal Of Comparative Neurology 1984, 226: 403-420. PMID: 6747030, DOI: 10.1002/cne.902260309.Peer-Reviewed Original ResearchConceptsNuclear YellowPrincipal sulcusArea 46Prefrontal granular cortexDeep cortical layersPrefrontal association cortexIntraparietal sulcusHorseradish peroxidase histochemistryInjection of tracerPosterior parietal cortexSulcal cortexCallosal neuronsCallosal projectionsContralateral neuronsIntrahemispheric connectivityArea 8AIpsilateral projectionInfragranular layersGranular cortexTerminal fieldsLaminar positionAssociation cortexLayer IIITerminal arborsDistinct cell populations
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply